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1 INTRODUCTION 

Satellite sensors represent a unique source of observations essential for the global monitoring of 

precipitation, complementing the surface observations that are too sparse and primarily restricted to 

populated land regions (Kidd et al., 2017), and (in the case of weather radars) nearby coastal waters. 

At present about 40 years of satellite observations are available for the quantitative estimation of 

precipitation thanks to an increasing availability of precipitation-capable sensors based on different 

observation principles/techniques. The present scenario includes conical and cross-track scanning 

multichannel passive microwave (PMW) instruments on board low Earth orbiting (LEO) satellites, 

geostationary (GEO) visible/infrared (VIS/IR) imagers, and cloud and precipitation radars. The 

increasing number of precipitation-devoted satellite sensors and the improvement of the related 

technologies allowed for providing precipitation products at temporal and spatial scales close to 

diverse user requirements. Nevertheless, further improvements are expected in terms of 

precipitation estimate accuracy, spatial and temporal resolution, and spatial coverage of the 

observations, as expressed by the different user’s communities [Report WP1000]. This means that 

besides the continuation of the operational missions to ensure the uninterrupted data flow necessary 

for hydro-meteorological applications and the exploitation of the long-term data sets for climate 

monitoring, new observation techniques need to be explored for their near future launch, including 

multi-frequency radars and constellations of small satellites. The innovation of the satellite 

observing systems is in fact strictly connected with the need to fill the existing gaps in precipitation 

remote sensing, chiefly the quantification of solid/liquid precipitation at high latitudes and of low-

intensity rainfall. The last few decades of research on satellite precipitation have clearly identified 

solid and low-intensity precipitation as current gaps in existing global products. Even the advent of 

the Global Precipitation Measurement (GPM) mission has not completely filled these gaps due to 

several limitations in the radar observing capabilities. Note that improvements in solid precipitation 

retrievals from space could well contribute to a better quantification of the snowfall contribution to 

the water cycle by partially overcoming current limitations of ground-based measurement 

techniques (Rasmussen et al., 2012). The introduction of the orographic effects on precipitation 

formation (e.g., Shige et al., 2013; Yamamoto et al., 2017), the correct identification and weighing 

of warm rain (especially in the Tropics; e.g., Sohn et al., 2013; Song and Sohn, 2015) as well as an 

adequate sensing of the cloud horizontal and vertical structure appear necessary to ensure a 

successful precipitation retrieval both for cloud physics reasons (Stephens and Kummerow, 2007) 

and for mere geometric effects (e.g., Guilloteau et al. 2018). Finally, the new missions need 

necessarily to contribute shedding new light not only on the amount and intensity of precipitation, 

but also on its frequency and distribution, especially for managing weather-related risks (e.g., Marra 

et al. 2019; Mazzoglio et al., 2019), clearly spotting extremes out of ordinary events (e.g., Zorzetto 

et al., 2016) and identifying climate change effects on the water cycle (e.g., Trenberth et al., 2003; 

Trenberth and Zhang, 2018). For these reasons, the new precipitation-oriented missions should aim 

at a truly global coverage while at the same time fully exploiting the capabilities of PMW and multi-

frequency radars. 

In this context the aim of this report is to provide a review of the present observing system for 

satellite remote sensing of precipitation with a focus on the recent advances for the solid and light 

precipitation (Section 2). A survey of the new mission concepts based on constellation of small 

satellites and the new sensors planned for the near future are presented in Sections 3 and 4, 

respectively. Finally, Section 5 addresses critical gaps in the observational techniques with reference 

to the still open issues in precipitation remote sensing, and provides recommendations from the user 

community. 
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2 REVIEW OF THE STATE-OF-THE-ART OBSERVING SYSTEM FOR 

SATELLITE REMOTE SENSING OF PRECIPITATION 

 

Several well documented review articles are available in the literature providing a complete 

description of algorithms, retrieval techniques and products. Note that, however, such reviews 

become rapidly outdated by rapidly evolving technology and science developments. Among such 

review articles, we will cite: Kidd et al. (2010), Kidd and Huffman (2011), Kidd and Levizzani 

(2011), Michaelides et al. (2009), Stephens and Kummerow (2007), Sun et al. (2018), Tapiador et 

al. (2012, 2017). The International Precipitation Working Group (IPWG, http://ipwg.isac.cnr.it) 

maintains a list of available satellite precipitation products and fosters collaboration on new 

development and dissemination of results to end-users (Levizzani et al., 2018). A most 

comprehensive book on satellite precipitation measurement including state-of-the-art techniques 

and science, validation and applications is currently in press (Levizzani et al., 2019). 

 

2.1 VIS/IR sensors – GEO satellites 

 

Thermal IR (TIR) observations from GEO sensors are widely exploited for the precipitation remote 

sensing because of their high time sampling and spatial resolution, which are consistent with 

precipitation temporal variability and suitable for daily precipitation accumulation. GEO sensors 

provide information on cloud top characteristics (temperature, optical thickness, thermodynamic 

phase, and effective radius), which are useful to identify precipitating clouds. The TIR-derived cloud 

top temperature in particular is used in the precipitation retrieval, considering colder cloud tops as 

indicators of precipitating clouds with a high vertical development. This is the idea at the base of 

the TIR precipitation estimate, a quite indirect retrieval methodology relying only on cloud top 

properties, which needs the support of precipitation estimates from MW or rain gauge networks to 

establish the connections between the TIR observation and precipitation intensity through statistical 

relationships or dynamical calibrations (Report WP1000). TIR-based retrievals are more oriented to 

convective precipitation estimate with clear difficulties in warm/orographic precipitation retrieval 

due to the cloud top temperature thresholds that are often too low for identifying orographic 

precipitation bearing clouds (e.g., Dinku et al., 2008). Other limitations are the degradation of the 

spatial resolution at high latitudes that makes GEO observations inapplicable for those areas and the 

complete inability to distinguish between liquid and solid precipitation. The history of the 

development of these techniques can be found for example in Kidd and Levizzani (2011). In recent 

times advances can be registered mainly concerning the introduction of cloud classification methods 

(e.g., Behrangi et al., 2010), the use of lightning data to improve heavy convective rainfall detection 

(e.g., Xu et al., 2014), the application of deep neural networks (Tao et al., 2018), and the 

improvement of the homogeneity of the products (e.g., Adler et al., 2018) and of the undercatch 

biases of the climatology (Funk et al., 2015). 

 

2.1.1 Current status of GEO relevant instruments 

 

Out of the 156 operational meteorological satellites presently in orbit, about 17 are operational from 

a geostationary orbit (World Meteorological Organization – Observing Systems Capability Analysis 

and Review Tool, WMO – OSCAR, https://www.wmo-sat.info/oscar/spacecapabilities). Each GEO 
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sensor monitors about one third of the Earth surface according to its own sub-satellite point (full 

disk). Nevertheless, due to the spatial resolution deterioration while approaching the border of the 

full disk with the consequent limited usability of the data in that area, five operational GEO satellites 

are required to ensure a complete West-East and North-South (∼70°N – 70° S) coverage (Kidd and 

Huffman, 2011). Currently the primary platforms contributing to the GEO constellation are operated 

by the European Organization for the Exploitation of the Meteorological Satellites (EUMETSAT) 

with the Meteosat satellite series, the National Oceanic and Atmospheric Administration (NOAA) 

with the Geostationary Operational Environmental Satellite (GOES) satellites, the China 

Meteorological Administration (CMA) through the Feng-Yun-2 and 4A (FY-2, FY-4A) platform 

series, the Japan Meteorological Agency (JMA) with the Himawari-8 and 9 (in stand-by), and finally 

the Korea Meteorological Administration (KMA) with the Communication, Ocean, and 

Meteorological Satellite (COMS) and the GEO-KOMPSAT-2A (GK-2A, in commissioning phase) 

platforms. During the last decades these agencies promoted a continuous improvement of the VIS/IR 

sensors on board the GEO satellites, giving rise to a transition towards sensors equipped with a 

higher number of spectral channels, better spatial resolutions, and reduced acquisition time. Table 

1 and 2 summarize the characteristics of the GEO sensors of the last generation. 

 

Table 1: Summary of the presently operational geostationary sensors and their lifetime schedule 

(WMO-OSCAR, https://www.wmo-sat.info/oscar/gapanalyses). Information about the lifetime of 

the Meteosat satellite series come from the EUMETSAT’s OSSI 

(https://www.eumetsat.int/ossi/webpages/about.html). 

 

Sensor Satellite SSP 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 

ABI GOES-16 75.2° W              

ABI GOES-17 137.2° W              

AGRI FY-4A 105° E              

AHI Himawari-8 140.7° E              

AHI Himawari-9 140.7° E              

AMI GK-2A 128.2° E              

SEVIR

I 

Meteosat-11 0°       Availability lifetime until 2024 –  

from EUMETSAT 

  

SEVIR

I 

Meteosat-10 

RSS 

9.5°E        Availability lifetime until 2024 –  

from EUMETSAT 
  

SEVIR

I 

Meteosat-8 

IODC 

41.5°E    Fuel lifetime is until 2020 –  

from EUMETSAT 

       

 

The common characteristics are: 

1. Spectral channel equipment: at least two channels in VIS and the TIR window at ~ 11 μm; 

one or more channel(s) in the NIR, the SWIR and the MWIR window at ~ 3.7 μm, and two 

or more channels in the TIR water vapor 6.3 μm band. This enables observing a wide range 

of geophysical variables, including cloud classification and properties (top temperature, 

optical thickness, thermodynamic phase and effective radius), atmospheric motion wind by 

cloud and water vapor tracking, and precipitation intensity. 

2. Spatial resolution: ranging from 2(3) km at the sub-satellite point (SSP) for the 

NIR/SWIR/MWIR channels to 1 km or even better for the VIS channels. 

3. Acquisition time: from 15-10 min for the full disk, up to 2.5 – 7.5 min or less for the 

acquisition of limited areas in the rapid scanning service (RSS) mode. 

 

 

https://www.wmo-sat.info/oscar/gapanalyses
https://www.eumetsat.int/ossi/webpages/about.html
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Table 2: GEO satellite sensor fact sheets. 

 
Advanced Baseline Imager (ABI) 

Platforms: NOAA - GOES 16 and 17, operational since Dec 2017 and Feb 2019 at 75.2° and 137.2° W, 

respectively.  

Channels (resolution): 470 nm (1 km), 640 nm (0.5 km), 860 nm (1 km), 1380 nm (2 km), 1610 (1 km), 2260 nm 

(2 km), 3.90, 6.15, 7.00, 7.40, 8.50, 9.70, 10.3, 11.2, 12.3 13.3 𝜇m (2 km). 

Scanning technique: Mechanical, 3-axis stabilized satellite, E-W continuous, S-N stepping. 

Coverage/cycle: Full disk every 15 min, CONUS in 5 min, 1000 x 1000 km2 in 30 s. 

Advanced Geostationary Radiation Imager (AGRI) 

Platforms: CMA - Feng-Yun-4A (105° E), Feng-Yun-4B planned in ≥ 2019. 

Channels-resolution: 0.47 (1km), 0.65 (0.5-1 km), 0.825 (1 km), 1.375 (2 km), 1.61 (2 km), 2.25 (2-4 km), 3.75, 

6.25, 7.1, 8.5, 10.7, 12.0, 13.5 𝜇m (2 km). 

Scanning technique: Mechanical, 3-axis stabilized satellite, E-W continuous, S-N stepping. 

Coverage/cycle: Full disk acquisition in 15 min, RSS of the north disk in 2.5-5-7.5 min according to the 

observation mode. 

Advanced Himawari Imager (AHI) 

Platforms: JMA – Himawary-8 and 9 (140.7° E). 

Channels-resolution: 0.455, 0.510 (1 km), 0.645 (0.5 km), 0.860 (1 km), 1.61, 2.26, 3.85, 6.25, 6.95, 7.35, 8.60, 

9.63, 10.45, 11.20, 12.35, 13.30 𝜇m (2 km). 

Scanning technique: Mechanical, 3-axis stabilized satellite, E-W continuous, S-N stepping. 

Coverage/cycle: Full disk acquisition in 10 min, RSS of the limited areas in shorter time intervals. 

 

Advanced Meteorological Imager (AMI) 

Platforms: KMA – GEO-KOMPOSAT-2A (128.2° E), the satellite is presently in the commissioning phase. The 

operational GEO service is carried out by the COMS satellite – MI sensor, a five VIS/MWIR/TIR channels sensor 

predecessor of the new AMI. 

Channels-resolution: 0.470, 0.509 (1 km), 0.639 (0.5 km), 0.863 (1 km), 1.37, 1.61, 3.83, 6.21, 6.94, 7.33, 8.59, 

9.62, 10.35, 11.23, 12.36, 13.29 𝜇m (2 km). 

Scanning technique: Mechanical, 3-axis stabilized satellite, E-W continuous, S-N stepping. 

Coverage/cycle: Full disk acquisition in less than 10 min, RSS of limited areas in shorter time intervals. 

Spinning Enhanced Visible and Infra-Red Imager (SEVIRI) 

Platforms: EUMETSAT - Meteosat-11 (0° service), Meteosat-10 at 9.5°E (RSS), Meteosat-9 (standby), Meteosat-

8 (operational at 41.5°E for IODC). 

Channels-resolution: broad bandwidth VIS (0.6-0.9) 𝜇m - 1.6 km IFOV, 1 km sampling, 0.635, 0.81, 1.64, 3.92, 

6.25, 7.35, 8.70, 9.66, 10.8, 12.0, 13.4 𝜇m - 4.8 km IFOV, 3 km sampling.  

Scanning technique: Mechanical, spinning satellite, E-W continuous, S-N stepping. 

Coverage/cycle: Full disk every 15 min. RSS of limited areas in 5 min. 

 

 

2.2 Passive and active MW sensors 

 

Passive MW sensors, presently only on board of LEO satellites, provide a more direct mean to 

estimate precipitation than GEO VIS/IR sensors. The reason is that PMW frequencies are more 

directly responsive to the cloud internal processes and thus to precipitation formation mechanisms 

than the VIS/IR channels, because at these frequencies the precipitating hydrometeors are the main 

source of the attenuation (Michaelides et al., 2009). The emitted radiation from raindrops that makes 
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rain areas somewhat “warmer” that the surrounding “colder” ocean background and the reduction 

of the upwelling radiation due to scattering mainly related to ice particles are the two principal 

concepts at the base of the precipitation retrieval at these frequencies over ocean and land, 

respectively. The relatively low and the well predictable water surface emissivity makes the PMW 

retrieval methods more effective over ocean than over land. Surface emissivities are high and 

spatially quite variable so that the land surface contribution to the observable radiance is difficult to 

be separated from that of rain thus significantly affecting the rainfall retrieval accuracy. In recent 

years considerable research efforts were devoted to the creation of global surface emissivity maps 

in support of the PMW retrieval methods (e.g., Prigent et al., 2006), but the problem is still not 

completely solved. In this respect, higher frequency channels (> 89 GHz) can contribute to mitigate 

the effects of the poor knowledge of emissivity and scattering properties. Neural networks and large 

databases of surface types have been proposed for PMW retrieval algorithms such as for the Passive 

microwave Neural network Precipitation Retrieval (PNPR) both for cross-track (Sanò et al., 2016) 

and conical sensors (Sanò et al. 2018). 

The more traditional Bayesian approaches have in turn been extended to more or less all the PMW 

radiometers on board the entire constellation of satellites that compose the GPM such as in the case 

of the Cloud Dynamics and Radiation Database (CDRD) algorithm (Casella et al., 2017). 

Kummerow et al. (2015) have also proposed a fully parametric approach to transform the Goddard 

Profiling algorithm (GPROF) for an operational use in the GPM era: the idea is to use a Bayesian 

inversion for all surface types using the full brightness temperature vector to obtain the most likely 

precipitation state. 

High-frequency channels are instrumental also in solid precipitation retrieval, with the 150 GHz 

channel exhibiting the strongest scattering signature due to the precipitation sized ice particles only 

moderately affected by variations in surface emissivity (Levizzani et al., 2011; Laviola et al., 2015; 

Panegrossi et al., 2017). Recently, a few methods were proposed to estimate snowfall using diverse 

approaches such as training against CloudSat/CALIPSO observations and detecting supercooled 

water (Rysman et al. 2018), using a 1DVar method (Meng et al., 2017), and a hybrid PMW method 

dwelling on PMW measurements and global weather forecasts (Kongoli et al., 2018). 

Recent studies demonstrate the potential of low frequency channels for the retrieval of precipitation 

over land trough the temporal variation of the brightness temperatures at 19 GHz due to the surface 

emissivity variation caused by the precipitation impact (You et al., 2018), and the benefits of using 

a combination of low (10-19 GHz) and high frequency (89-166 GHz) channels for snowfall 

detection (Ebtehaji and Kummerow, 2017). More details on the use of these channels in retrieval 

algorithms are provided in the WP2200 Report of this project. 

 

2.2.1 Current status of PMW instruments 

 

In the recent decades PMW sensors underwent a continuous evolution in terms of number of 

available platforms, acquisition modes (conical and cross-track scanning), spectral channels 

extended to high frequencies (sounders with channels in the water vapor absorption bands at 183 

GHz), and spatial resolution. Moreover, the possibility to combine passive and active MW sensor 

observations provided a tool for a 3-D description of the precipitating systems. All these aspects 

contributed to reach the current configuration, where the LEO satellites with PMW sensors are able 

to obtain a near global coverage every 3h or less. The current constellation of PMW sensors is 

described in Table 3 (WMO-OSCAR Spaced-based Capability; see also Table 7 and 8 from Report 

WP1000 for complementary information): 
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Table 3: LEO PMW satellite sensor fact sheets. 

 
Advanced Microwave Scanning Radiometer-2 (AMSR-2) 

Platforms: JAXA GCOM-W1 

Channels: 7 frequencies / 14 channels in the range 6.9 to 89 GHz, window channels only 

Background: Follow-on of AMSR flown on ADEOS-2 and AMSR-E on EOS-Aqua 

Scanning technique: conical scanning 

Coverage/cycle: Global coverage once/day 

Relevance: MW channels around 10, 19, 23, 37 and 90 GHz, to cover sea and land, heavy and light precipitation. 

High spatial resolution consistent with the scale of precipitation. 

Advanced Microwave Sounding Unit – A (AMSU-A) 

Platforms: NOAA-18, 19, EUMETSAT MetOp-A, B, C 

Channels: 15 channels from 23.8 to 89.0 including the 54 GHz band 

Background: Replacing MSU flown on TIROS-N and NOAA-9 to -14 

Scanning technique: cross-track scanning 

Coverage/cycle: near-global coverage twice/day 

Relevance: MW channels in the 54 GHz band. Suitable for liquid precipitation over sea and land, Insensitive to 

surface emissivity 

Advanced Technology Microwave Sounder (ATMS) 

Platforms: SNPP, NOAA-20 

Channels: 22 channels (23.8 – 183 GHz) including the 54 and 183 GHz bands  

Background: development merging AMSU-A and AMSU-B flown on NOAA-15 to 17 

Scanning technique: cross-track scanning 

Coverage/cycle: near-global coverage twice/day 

Relevance: MW channels in the 54 and 183 GHz bands. Suitable for solid and liquid precipitation over sea and 

land, Insensitive to surface emissivity 

GPM Microwave Imager (GMI) 

Platform: NASA GPM Core Observatory 

Channels: 8 frequencies / 13 channels from 10.65 to 183.31 GHz; 

Background: evolution of TMI on TRMM 

Scanning technique: conical scanning 

Coverage/cycle: Near-global coverage in 2 days; high latitudes (> 70°) not covered 

Relevance: MW channels around 10, 19, 23, 37 and 90 GHz, to cover sea and land, heavy and light precipitation. 

High spatial resolution consistent with the scale of precipitation 

Microwave Humidity Sounder (MHS) 

Platforms: EUMETSAT MetOp-A (channel at 183.31 ± 10 GHz noisy since 2009), MetOp-B and C, NOAA-18, 

19 

Channels: 5 channels from 89 to 190 GHz 

Background: Replacing AMSU-B on NOAA 15/16/17 

Scanning technique: cross-track scanning 

Coverage/cycle: Near-global coverage twice/day 

Relevance: MW channels in the 183 GHz band. Suitable for solid precipitation over sea and land, Insensitive to 

surface emissivity 

Micro-Wave Humidity Sounder -2 (MWHS-2) 

Platforms: CMA FY- 3C, and 3D 

Channels: 15 channels from 89 GHz, including band at 183 and 118 GHz 

Background: Replacing the MWHS-1 of FY-3A and FY-3B 

Scanning technique: cross-track scanning 

Coverage/cycle: Global coverage twice/day 
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Relevance: MW channels in the 118 and 183 GHz bands. Suitable for solid and, to a less extent, liquid 

precipitation over sea and land, Insensitive to surface emissivity 

Micro-Wave Radiation Imager (MWRI) 

Platforms: CMA FY -3B, 3C and 3D 

Channels: 5 frequencies / 10 channels from 10.65 to 89 GHz 

Background: New development 

Scanning technique: conical scanning  

Coverage/cycle: Global coverage once/day 

Relevance: MW channels around 10, 19, 23, 37 and 90 GHz, to cover sea and land, heavy and light precipitation.  

Sondeur Atmosphérique du Profil d’Humidité Intertropicale par Radiométrie (SAPHIR) 

Platform: ISRO-CNES Megha-Tropiques 

Channels: 6 channels in the 183 GHz band 

Background: New development 

Scanning technique: cross-track scanning  

Coverage/cycle: Intertropical coverage 2 to 5 times/day depending on latitude (best coverage at 15°N and 15°S) 

Relevance: MW channels in the 183 GHz band. Suitable for solid precipitation over sea and land, Insensitive to 

surface emissivity 

Special Sensor Microwave - Imager/Sounder (SSMIS) 

Platforms: DoD, NOAA DMSP-F16, 17, and 18 

Channels: 21 frequencies / 24 channels from 19.35 to 183.31 GHz, including the 54 and 183 GHz bands 

Background: Replacing and merging SSM/I, SSM/T and SSM/T-2 flown on DMSP up to F15 

Scanning technique: conical scanning  

Coverage/cycle: Global coverage once/day 

Relevance: MW channels around 19, 23, 37 and 90 GHz; and in bands 54 and 183 GHz, insensitive to surface 

emissivity and providing information on atmospheric structure 

 

 

2.2.2 The Global Precipitation Measurement mission 

 

The combined use of passive and active MW instruments has represented a clear step forward in the 

precipitation retrieval from space since the launch of the Tropical Rainfall Measurement Mission 

(TRMM) in 1997. For the first time a Precipitation Radar (PR) at Ku-band (13.8 GHz), a PMW 

multi-frequency imager (TRMM Microwave Imager, TMI), and a Lightning Imaging Sensor (LIS) 

were hosted on the same platform in a non-Sun-synchronous orbit observing at different times of 

the day (Kummerow et al., 1998, 2000). TRMM allowed for looking through the precipitation 

column, providing new insights on the three-dimensional distributions of precipitation and latent 

heating in the Tropics. In 2014 the GPM mission collected the legacy from TRMM further 

expanding the rain-sensing capabilities. The key member of the mission is the GPM–Core 

Observatory (GPM–CO), carrying the most advanced precipitation sensors currently in space, i.e. 

the first Dual-frequency Precipitation Radar (DPR) provided by JAXA and the multi-frequency 

GPM Microwave Imager (GMI) from NASA (Skofronick-Jackson et al., 2017, 2018), from a non-

Sun-synchronous orbit at 65°inclination. The GPM-CO observations are complemented by the 

acquisitions of a constellation of international satellite partners of opportunity, including the sensors 

SSMIS, AMSR-2, SAPHIR, MHS, and ATMS for a total of 11 satellites (Table 4).  
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Table 4: GPM constellation members (Skofronick-Jackson et al., 2018). 

 
Satellite Sensor Launch Until 

TRMM TMI 27 Nov 1997 8 Apr 2015 

TRMM PR   

DMSP F16 SSMIS 10 Oct 2003  

NOAA 18 MHS 5 May 2005 21 Oct 2018 

MetOpA MHS 19 Oct 2006  

DMSP F17 SSMIS 5 Nov 2006  

NOAA 19 MHS 6 Feb 2009  

DMSP F18 SSMIS 18 Oct 2009  

Megha-Tropiques SAPHIR 12 Oct 2011  

SNPP ATMS 28 Oct 2011  

GCOM-W1 AMSR-2 17 May 2012  

MetOpB MHS 17 Sept 2012  

GPM-CO GMI 27 Feb 2014  

GPM-CO DPR   

DMSP F19 SSMIS 3 Apr 2014 11 Feb 2016 

 

In this frame the GPM-CO has the role of calibrator to ensure unified and consistent precipitation 

estimates from all satellite partners at high temporal (0.5-3.0 h) and spatial (5-15 km) scales, 

allowing for detailed investigations of the precipitation distribution and variability. 

The DPR instrument consists of a Ka-band precipitation Radar (KaPR) operating at 35.5 GHz and 

a Ku-band Precipitation Radar (Ku-PR) at 13.6 GHz (Hou et al., 2014). The KuPR and KaPR have 

coaligned 5 km resolution footprints over the cross-track swath widths of 245 and 125 km, 

respectively (Figure 1), with a nearly simultaneous data acquisition in the inner swath of 120 km. 

 

 
 

Figure 1: Swath coverage of the GPM–Co sensors. [available at https://pmm.nasa.gov/GPM] 

 

Both radars have a nominal vertical range resolution of 250 m, sampled every 125 m, with a 

minimum detectable signal of better than 18 dBZ. During the KuPR acquisition of the outer portion 

of the 245 km swath, the KaPR enters the high-sensitivity acquisition mode, by acquiring data from 

https://pmm.nasa.gov/GPM
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the interlaced fields as shown in Figure 2. The KaPR high-sensitivity mode has a minimum 

detectable signal of approximately 12 dBZ with a vertical resolution of 500 m. Since 21 May 2018 

the Ka radar scans like the Ku (see Figure 2b). 

 

 
 

Figure 2: DPR’s scan patterns before 21 May 2018 (a) and after 21 May 2018 (b). KaHS beams 

scan in the inner swath before 21 May 2018, but now they scan in the outer swath and match with 

KuPR’s beams. Numbers in color indicate angle bin numbers for KuPR (blue), KaMS (yellow), and 

KaHS (red). HS stands for High Sensitivity and MS for Matched Scan 

 

Table 5: Comparison between the GPM DPR and TRMM PR instrument characteristics (Hou et al., 

2014). 

 

 
 

Thus, although similar to the TRMM PR, the Ku-band channel of the DPR is designed to have 

higher precision resulting from a greater number of independent samples (used to form the average 

return power) and greater sensitivity owing to the higher transmitted peak power to achieve a 

minimum detection threshold of 0.5 mm h–1 (or 18 dBZ). The Ka band, when operated in the high 

sensitivity mode, further extends the DPR sensitivity range to detect precipitation rates down to 
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about 0.2 mm h–1 (12 dBZ). These figures were the ones foreseen for the mission before launch. In 

reality, the Ku band threshold is ~12 dBZ while the one for the Ka band is ~16dBz. In Table 5 a 

detailed comparison of the GPM DPR and the TRMM PR is reported. 

Besides the higher sensitivity at light rain rates, a key advance of the DPR over the TRMM PR is 

its ability to provide quantitative estimates of the precipitation particle size distribution from the 

overlapping portion of the Ku and Ka swaths over a nominal range of precipitation intensities from 

a few to ~15 mm h–1. DPR measurements provide physical insights into microphysical processes 

(evaporation, collision/coalescence, and aggregation) and improved capabilities in distinguishing 

regions of liquid, frozen, and mixed-phase precipitation (Hou et al., 2014). 

The GMI is a conical scanning radiometer with a spectral channel equipment ranging from 10 to 

183 GHz, thus combining the channels normally hosted on the imagers (TMI included) with high-

frequency channels and the water vapor absorption band typical of the sounders. This channel 

selection was carried out with the intent to optimize the detection of heavy, moderate and light 

precipitation as detailed in Table 6 (Hou et al., 2014). 

 

Table 6: Key application of the GMI channels. 

 
Frequency (GHz) Use 

10 liquid precipitation 

19 & 37 moderate to light precipitation over ocean 

21 correction of the emission by water vapor 

89 detection of ice particles for precipitation over ocean and land 

166 light precipitation, typical outside the tropics 

183 scattering signals due to small ice particles and estimating light 

rainfall and snowfall over snow-covered land 

 

The GMI swath width is 885 km (Figure 1), whose central portion is overlapping the DPR Ku-Ka 

swaths with an approximately 67 s lag with respect to DPR observations due to geometry and 

spacecraft motion. The GMI antenna diameter together with the spacecraft altitude (407 km) ensure 

a higher spatial resolution than the TMI and all other radiometers in the GPM constellation. 

New capabilities made possible by the GPM sensor suite concern the detection of snowfall (e.g., 

Panegrossi et al., 2017; You et al., 2017). 

 

2.2.3 CloudSat and CALIPSO within the A-Train constellation 

 

The synergistic use of satellite sensors is recently the more exploited concept and paves the way to 

high-level scientific results in the field of cloud and precipitation remote sensing. This concept 

experienced an evolution since 1997, when the TRMM mission deployed passive and active MW 

instruments (TMI and PR) on the same platform for the three-dimensional characterization of 

tropical precipitation. Now the satellite constellations represent the present and the near future for 

“distributed observing systems” (Stephens et al., 2018), as the previously described GPM or the 

recent small satellite constellations (see next section). The A-Train constellation belongs to this 

scenario in its own right and represents one of the most successful demonstrations of the 

effectiveness of an integrated approach for cloud and precipitation characterization. New insights 

into cloud and precipitation formation processes came from the observations jointly collected by 

CloudSat (Stephens et al., 2002, 2008) and the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite 

Observations (CALIPSO; Winker et al., 2010) satellites since their launch on 28 April 2006, proving 
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together with TRMM mission and now GPM the importance of vertical profile information for 

understanding processes of the atmosphere. Table 7 summarizes the characteristics of the main 

instruments hosted by the two platforms, i.e. the Cloud Profiling Radar (CPR) and the Cloud-

Aerosol Lidar with Orthogonal Polarization (CALIOP). 

 

Table 7: Characteristics of CPR and CALIOP instruments. 

 
Cloud Profiling Radar (CPR) 

Platforms: CloudSat 

Channels: 94.05 GHz 

Resolution: horizontal - 1.4 km (cross-track) x 3.5 km (along-track); vertical - 500 m 

Background: New development. Cooperation with Canadian Space Agency (CSA) 

Scanning technique: None.  Along-track sampling at 2 km intervals 

Coverage/cycle: Global coverage in 16 days 

Relevance: W-band sensitive to light precipitation, small drops and ice particles; boundary between precipitating 

and non-precipitating convective clouds. 

Cloud-Aerosol Lidar with Orthogonal Polarisation (CALIOP) 

Platforms: CALIPSO 

Channels: two wavelengths (532 and 1064 nm), measurements at two orthogonal polarizations 

Resolution: horizontal - 70 m IFOV sampled at 333 m intervals along track; vertical - 30 m 

Background: New development 

Scanning technique: Nadir-only viewing, sampling at 330 m intervals along track, near continuous profiling 

Coverage/cycle: Global coverage in 16 days 

Relevance: vertical distribution of clouds: cloud optical depth, top height, cloud drop and ice particle effective 

radius, cloud liquid and ice total column, freezing level height in clouds, melting layer depth in clouds 

 

The combined use of CPR and CALIOP enabled new capabilities in observing clouds and 

precipitation. Figure 3 shows the multiyear zonally averaged frequency of occurrence of 

precipitation by type (Figure 3a), and the vertical profile of occurrence of precipitation (Figure 3b). 

Precipitation systems are much deeper on average in the tropics (Figure 3b), and the frequency of 

precipitation is strongly enhanced in middle and higher latitudes, where snowfall becomes the more 

prevalent mode of precipitation poleward of about 60°N and 60°S (Figure 3a) (Stephens et al., 

2018). 

 

a) b) 

 

Figure 3: a) multiyear annual-mean precipitation fractional occurrence from CloudSat 2C-

COLUMNPRECIP product; b) multiyear latitude–height sections of annual zonal-mean 

precipitation (attenuation-corrected radar reflectivity >0 dBZ) occurrence (Stephens et al., 2018). 
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In the CloudSat precipitation product exploited in Figure 3 (2C-COLUMNPRECIP; Haynes et al., 

2009) the detection of precipitation is performed over land and ocean (Smalley et al., 2014), 

including a phase determination (rain, mixed, and snow) based on the maximum tropospheric 

temperature in the CloudSat observation profile. The precipitation occurrence is determined using 

the reflectivity profile of the lowest discernible cloud layer, after correction for attenuation. 

 

 
 

Figure 4: Contributions to the cloud radiation effects. The cloud classification is determined by the radar–

lidar data of CloudSat and CALIPSO, where true cloud heights establishing the types and cloud thicknesses 

(x axis) are from water and ice path information, which is proportional to cloud optical depth. 

Ci = cirrus, D.C. = deep convection, M.L. = multilayer, AS = altostratus, AC = altocumulus, NS = 

nimbostratus, St = stratus, SC = stratocumulus, and Cu = cumulus. (Stephens et al., 2018) 

 

The joint observations of CloudSat and CALIPSO contributed to an updated interpretation of the 

contribution to the net cloud radiative effect from different cloud types, as shown in Figure 4. The 

cloud-top height is unambiguously determined using CloudSat-CALIPSO data. The profile 

information from the radar–lidar instrument pair allow for the identification of multilayered cloud 

systems, which occur about 60% of the time clouds are observed (Stephens et al., 2008). These 

multilayered categories, consisting mostly of high clouds over low clouds, are mostly missing in the 

radiance-based classifications. 
CPR data have shown a great potential also for precipitation estimation and snowfall in particular, 

providing vertical profiles of snowfall rate along with snow size distribution parameters and snow water 

content (2C-SNOW-PROFILE; Wood and L’Ecuyer, 2018). The assessment of the surface precipitation 

type as dry snow or snow with a small melted fraction is conducted through the 2C-PRECIP-COLUMN 

product that provides vertically-resolved information on snowfall and snow properties between 82°N 

and 82°S together with uncertainty estimates, and treats complications due to radar attenuation and 

multiple scattering especially relevant for heavier snowfalls. Mind that a priori information is necessary 

on particle size distributions (PSD), mass, shape and scattering properties since the radar backscattering 

at the 94 GHz of the CPR is sensitive to all these quantities (e.g., Liu, 2008a; Wood et al., 2015). The 

phase of precipitation both aloft and at the surface is determined using coincident information on 

atmospheric temperature from the profiles of the European Centre for Medium-range Weather Forecasts 

(ECMWF); mind that, given the narrow temperature range 0-4°C where the transition from solid to 

liquid hydrometeors occurs, small variations in temperature can induce substantial changes in 

precipitation phase and the associated precipitation (e.g., Liu, 2008b). Issues with the CloudSat products 

are also linked to both ground clutter and the estimated fall speeds of the hydrometeors. Thus, significant 

improvements could potentially come from Doppler measurements (e.g., Illingworth et al., 2015) and 

enhanced resolution to reduce clutter. 

The CPR has indeed contributed to advance our knowledge of snowfall distribution and characteristics 

around the globe. Several studies were made possible addressing science questions, for example, on: 

snowfall from shallow cumuliform clouds (Kulie et al., 2016; Kulie and Milani, 2018), snowfall over 

the Poles with first-hand investigations on snowfall over iced background (e.g., Milani et al., 2018; 
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Palerme et al., 2019), global distribution of solid precipitation and its characteristics (e.g., Adhikari et 

al., 2018). Figure 5 shows the first global census of snowfall events obtained from CloudSat. 

 

 
 

Figure 5: CloudSat-derived (a) snowfall fraction (%) and (b) mean annual liquid equivalent 

snowfall (mm yr-1) in 1°×1° bins for a 2006–10 dataset. Snowfall fraction is defined as the number 

of snowfall events divided by the total number of observations in each grid box (Kulie et al., 2016). 

 

2.2.4 Recent studies on spaceborne radars 

 

Currently available technology has enabled the development of spaceborne radar concepts with Ka-

band channels capable of achieving sensitivities around -10 dBZ, and electronic scanning radars 

operating at Ku-, Ka- and W-band (e.g., ACE 2016; Tanelli et al., 2018). This will allow multiple 

frequency radars such as the airborne Airborne Third Generation Precipitation Radar (APR-3; Ku-, 

Ka- and W-band) flown in the Olympic Mountain Experiment (OLYMPEX) Campaign (Chase et 

al., 2018), to be available on space platforms. Other developments include the increase of the spatial 

resolution and the design of Doppler capabilities. Finally, mm-wave technology advances have 

enabled the development and demonstration of instruments in the G-band (Battaglia et al., 2014). 

Inclusion of such capabilities in future radar systems that also operate at W-band (or lower) would 

allow measurement relative humidity and particle size in ice clouds and thus provide essential 

information for determining ice crystal growth processes and rates. 

3 SMALL SATELLITE CONSTELLATIONS 

Recent scientific and operational applications in several different fields, such as climate, 

meteorology, hydrology, agriculture, have introduced the need for higher space-time monitoring of 

the Earth’s atmosphere and surface. In particular, clouds and precipitation observations for 

meteorology and climate are natural targets of high space-time resolution Earth-observation 



 
ESA Contract No. 4000125959/18/NL/NA 

Raincast WP2000 Report 
Page 16 

__________________________________________________________________________________ 
 

 

This document is property of the RAINCAST consortium. 

In response to ITT: AO/1-9324/18/NL/NA                   

 

missions, due to their diverse space-time evolving structure and to the high number of unsolved 

scientific questions on precipitation systems. Such needs cannot be anymore met by the current 

constellation of environmental and meteorological satellites because of the low revisit time resulting 

in inadequate coverage and of the costs of large platforms hosting several sensors. Moreover, it is 

crucial to ensure uninterrupted “heritage” measurements for climate applications, especially in the 

MW spectral range. New strategies thus become necessary to ensure cost effective and higher space-

time resolution Earth-observation (EO) initiatives trying to break the traditional trade-off in EO 

mission design between GEO and LEO missions. 

Small satellites appear to be the clear development avenue both in terms of new observation 

technologies and replicability of the single sensor translated into constellations that are relatively 

easy to launch and maintain. In particular, the recent development of High Electron Mobility 

Transistors (HEMT) or Metamorphic HEMT (MHEMT) promise an economical hardware solution 

for radiometers operating within the MW and millimeter wave spectrum. Microwave sensors spatial 

resolution is a function of frequency of operation, orbit altitude, and antenna aperture size. The 

largest antenna currently deployed is used by AMSR-2 with 2 m diameter. The solid parabolic 

reflector antennas are very large, heavy, and very expensive to launch to orbit. Deployable antennas 

for small satellites, e.g. CubeSats, are under development. Using these new technologies, a reflector 

with 2 m aperture and ~500 grams mass could be stowed into a 102 mm diameter cylinder 323 mm 

long, thus fitting into a 3U volume of a CubeSat. 

As to the radar sensors, combinations of the two approaches that foresee one or few very capable 

radars vs. many simple radars on small satellites are currently being considered not only to increase 

global sampling and mapping, but also to provide three dimensional datasets at the meso-gamma 

scale, necessary to properly interpret the observed vertical profiles. 

The Time-Resolved Observations of Precipitation structure and storm Intensity with a Constellation 

of Smallsats (TROPICS), the Temporal Experiment for Storms and Tropical Systems–Demonstrator 

(TEMPEST-D), the Radar in a CubeSat (RainCube), the Tropospheric Water and cloud ICE 

(TWICE), and the IceCube are the most promising small satellite missions focused on cloud and 

precipitation observations. 

 

3.1 Time-Resolved Observations of Precipitation structure and storm Intensity with a 

Constellation of Smallsats (TROPICS) 

 

The mission is based on the MicroMAS-2 CubeSats, which are dual-spinning 3U CubeSats (Figure 

6) equipped with a 12-channel PMW high-performance radiometer scanning across the satellite 

track at 30 revolutions per minute (RPM) to provide both sounding (temperature and humidity, 2–

3 km vertical resolution) and imaging capabilities. Each radiometer includes seven channels near 

the 118.75 GHz oxygen absorption line for temperature, 3 channels near the 183 GHz water vapor 

absorption line for water vapor profiles, a single channel near 90 GHz for precipitation 

measurements in combination with the previous channels, and a single channel at 206 GHz for cloud 

ice measurements. The TROPICS baseline configuration envisages a constellation of 6 CubeSats 

with two satellites in each of three equally spaced orbital planes with 30° inclination and 550 km 

altitude, which will allow for the mission requirement of 1 hr median revisit time to be achieved 

even with the failure of up to two satellites. The full swath of the radiometer observations will be 

fully programmable and extendable to ±60° from nadir, with a 1.5° cross-track sampling interval 

(81 spots/swath). The spatial resolution (averaged over the swath) is approximately 25 km for the 
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moisture channels (183–206 GHz) and approximately 40 km for the temperature channels (90–118 

GHz). 

 

 
 

Figure 6: The TROPICS space vehicle showing CubeSat bus, radiometer payload, and deployed 

articulated solar array (Blackwell et al., 2018). 

 

TROPICS will provide rapid-refresh MW measurements over the tropics to observe the 

thermodynamics of the troposphere and precipitation structure for storm systems at the mesoscale 

and synoptic scale over the entire storm lifecycle. The main science objectives are: relate 

precipitation structure evolution, including diurnal cycle, to the evolution of the upper-level warm 

core and associated intensity changes of hurricanes and tropical storms; relate the occurrence of 

intense precipitation cores to storm intensity evolution; relate retrieved environmental moisture 

measurements to coincident measures of storm structure (including size) and intensity; and 

assimilate microwave radiances and/or retrievals in mesoscale and global numerical weather 

prediction (NWP) models to assess impacts on storm track and intensity. In this respect thanks to 

its high-resolution and rapid-updated PMW measurements, TROPICS will bridge the gaps between 

the GEO VIS-IR nearly continuous observations, with storm structure information primarily limited 

to the evolution of cloud tops, and PMW observations from LEOs, which are able to reveal the 

tropical cyclone structure beneath the cloud tops, but are relatively infrequent with gaps in time of 

several hours. 

The mission has been selected by NASA as part of the Earth Venture-Instrument-3 (EVI-3) program 

currently scheduled for launch in late 2019 (Blackwell et al., 2018).  

 

3.2 Temporal Experiment for Storms and Tropical Systems – Demonstrator (TEMPEST-

D) 

 

The TEMPEST-D mission (Reising et al., 2017, 2018) is a project of Colorado State University in 

partnership with NASA/Caltech Jet Propulsion Laboratory (JPL) and Blue Canyon Technologies. 

It is conceived to demonstrate the feasibility and capability of the TEMPEST Train mission based 

on a constellation of eight 6U CubeSats and focused on the study of rapidly evolving convective 

processes on a global scale. The TEMPEST Train mission will make measurements in quick 

succession using 8 PMW sensors in a single orbital plane (orbit altitude 425-450 km; inclination 

50°-60°) with a constellation swath overlap of at least 320 km (Figure 7). 
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Figure 7: TEMPEST Train mission design. [https://tempest.colostate.edu/TEMPEST-Fact-

Sheet.pdf] 

 

The TEMPEST-D satellite was successfully launched on 21 May 2018 in a near circular orbit at an 

altitude of ~400 km and inclination of 51.6°. It acquired its first full-swath orbital observations 

capturing Hurricane Florence over the Atlantic Ocean on 11 September 2018, revealing the eye of 

the storm surrounded by towering, intense rain bands using the millimeter-wave radiometer on a 

CubeSat (Figure 8).  

The Millimeter-wave Radiometer (MM) on board TEMPEST-D performs continuous measurements 

at five frequencies: 89, 165, 176, 180 and 182 GHz. It is a cross-track scanning instrument, 

measuring the Earth scene between ±45° nadir angles, and providing an 825-km wide swath from a 

400-km nominal orbit altitude.  

 

 
 

Figure 8: TEMPEST-D data capturing the features of hurricane Florence on 11 September 2018. 

[https://tempest.colostate.edu/TEMPEST-Fact-Sheet.pdf] 

 

The mission is intended to measure the temporal evolution of clouds from the moment of the onset 

of precipitation in order to help improving our current understanding of cloud processes at the global 

scale and constraining one of the largest sources of uncertainty in climate models. Uncertainties in 

the representation/parameterization of key processes that govern the formation and dissipation of 

https://tempest.colostate.edu/TEMPEST-Fact-Sheet.pdf
https://tempest.colostate.edu/TEMPEST-Fact-Sheet.pdf
https://tempest.colostate.edu/TEMPEST-Fact-Sheet.pdf
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clouds and control the global water and energy budgets lead to substantially different predictions of 

future climate in current models. 

 

 
 

Figure 9: RainCube radar and TEMPEST-D PMW radiometer observe Typhoon Trami south of the 

Japan archipelago on 28 Sept. 2018. Note that the two satellites observed the typhoon 5 min apart. 

The radar-radiometer observation of the axi-symmetric structure of Typhoon Trami is particularly 

effective as its intensity changed rapidly. 

 

 
 

Figure 10: Same overpasses as in Figure 9 but referring to vertical cross section of the RainCube 

scan (top) and 164 GHz map of the TEMPEST-D radiometer (bottom). The radiometer provides the 

wider context: the typhoon has an axi-symmetric structure around a well-defined eye, an eyewall, 

and the outer spiral-like rainbands elongated from the center in the region of the outflow. 
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Figure 11: Same as Figure 10 with the addition of the 87 GHz map (top left). As frequency 

increases, the brightness temperatures are affected by the scattering of the frozen hydrometeors 

(snowflakes/aggregates): lower brightness temperature areas corresponding to the outflow spiral-

like clouds become larger, because of the increasing optical thickness of the ice found in the upper 

cloud layers even for stratiform precipitation. 

 

The observational capabilities of TEMPEST-D in synergy with the RainCube radar (see next 

Section) are shown in Figure 9, 10 and 11. The combination of Z and (high frequency) brightness 

temperatures can improve interpretation of ice microphysics (see Figure 11). The radiometer 

provides the necessary coverage via a large swath. 

TEMPEST-D is supported by NASA's Science Mission Directorate, Earth Science Division and is 

managed by NASA's Earth Science Technology Office (ESTO). NASA JPL will provide the five-

channel millimeter-wave radiometer instrument.  

 

3.3 Radar in a CubeSat (RainCube) 

 

RainCube (Peral et al., 2017) is a technology demonstration mission to enable Ka-band precipitation 

radar technologies on a low-cost, quick-turnaround platform. It is sponsored by NASA ESTO 

through the InVEST-15 program and has already led to the development of a 35.75 GHz radar 

payload to operate within 6U CubeSats. The payload is a Ka-band radar of new architecture 

equipped with an ultra-compact lightweight deployable antenna (Figure 12). The project completed 

integration and testing in February 2018 and was delivered in March 2018. RainCube was launched 

from NASA’s Wallops Flight Facility on 21 May 2018 as part of the deployment of CubeSats from 

the International Space Station (ISS). RainCube has three main objectives: develop, launch, and 

operate the first radar instrument on a CubeSat (6U); demonstrate new technologies and provide 

space validation for a Ka-band (35.75 GHz) precipitation profiling radar at platform altitude of 400 

km or less (requirements against real figures in flight are shown in Table 8); enable future 

precipitation profiling Earth science missions on a low-cost, quick-turnaround platform. RainCube 

wants to fill the current gap in precipitation profiling capabilities, which are limited to a few 

instruments deployed in Low Earth Orbit (LEO). Such satellites cannot provide the temporal 
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resolution necessary to observe the evolution of weather phenomena down to the minute time scale. 

The cost of deploying a LEO constellation of such radar sensors would be prohibitive and thus the 

CubeSats are a feasible alternative (Peral et al., 2018), which should revolutionize our current 

capabilities of observing the internal structure of clouds at unprecedented space-time resolution. 

 

 
 

Figure 12: RainCube with its umbrella-like parabolic mesh 0.5 m antenna, which deploys out of its 

1.5U canister. 

 

Table 8: Radar electronics and antenna requirements for RainCube. 

 

Requirement Name Requirement Measured 

Sensitivity @400km 20 dBZ 11.0 dBZ 

Horizontal resolution @400km 10 km 7.9 km 

Nadir Data Window 0-18 km -3 to 20 km 

Vertical resolution 250 m 250 m 

Downlink data rate (in transmit) 50 kbps 49.57 kbps 

Payload power consumption 

(AntDeployment/STDBY/RXOnly/TXScience) 

10 / 8 / 15 / 35 W 5 / 3 / 10 / 22 W 

Mass 6 kg 5.5 kg 

Range sidelobe suppression >60 dB @ 5 km  >65 dB @ 1 km 

Transmit power & Transmit loss 10 W / 1.1 dB >39 dBm 

Antenna gain 42 dB 42.6 dB 

Antenna beam width 1.2 deg 1.13 deg 

 

A first cut to RainCube observational capabilities is provided in Figure 13 where observations of 

different storms are collected and in Figure 14 where the comparison with GPM DPR is 

summarized. 
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Figure 13: Collection of storms observed by RainCube. 

 

 
 

Figure 14: Comparison of the RainCube radar capabilities with GPM DPR’s on co-located 

overpasses. 

3.4 Tropospheric Water and cloud ICE (TWICE) 

 

TWICE is led by Colorado State University (Reising et al., 2016) and is based on a PMW radiometer 

with 4 channels at 118 GHz, 4 channels at 183 GHz, 2 channels at 240 GHz, 4 channels at 310 GHz, 
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and 2 channels at 670 GHz (V and H polarization). The radiometer aims at providing ice particle 

size information in both polluted and clean environments, and determining the influence of aerosol 

pollution on cloud particle size spectrum. The constellation wants to meet the scientific need for a 

better measurement of water vapor and ice clouds in the upper troposphere at a variety of local times 

covering the full diurnal cycle to address current limitations of PMW sensors in sun-synchronous 

orbits. This in order to improve the current limited understanding of upper tropospheric/lower- 

stratospheric (UTLS) processes in general circulation models (GCMs) for climate modelling. The 

TWICE instrument will meet the size, weight and power requirements for deployment in a 6U-Class 

satellite (see Figure 15 for some details on the satellite). 

 

 
 

Figure 15: Artist vision in space of the TWICE mission (courtesy S. C. Reising). 

 

 

 
 

Figure 16: The first ever 883 GHz cloud ice map. 

[https://atmospheres.gsfc.nasa.gov/climate/index.php?section=259] 

 

 

https://atmospheres.gsfc.nasa.gov/climate/index.php?section=259
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3.5 IceCube 

 

IceCube (Esper et al., 2018), deployed from the ISS in May 2017, has demonstrated-in-space a 

commercial 883 GHz radiometer developed by Virginia Diodes Inc., Charlottesville, VA, under a 

NASA Small Business Innovative Research contract. The main goal of the mission is the 

observation of the cloud ice and its role in the Earth's climate system regulating atmospheric 

radiation and interacting with dynamic, energetic and precipitation processes. Sensing atmospheric 

cloud ice requires instruments tuned to a broad range of frequency bands. However, it’s particularly 

important to fly submillimeter sensors to fill a significant data gap in the middle and upper 

troposphere, where ice clouds are often too opaque for IR and VIS sensors to penetrate, and also 

provide data about the tiniest ice particles that can’t be detected clearly in other MW bands. 

At this submillimeter wavelength the cloud ice scattering produces a larger brightness temperature 

depression than at lower frequencies, which can be used to retrieve vertically-integrated cloud Ice 

Water Path (IWP) and ice particle size (Figure 16). 

The next step is to infuse this experience into an ice-cloud imaging radiometer for NASA’s next 

proposed mission. The Aerosol-Cloud-Ecosystems (ACE, 2016) mission was already recommended 

by the National Research Council with the intent of assessing on a daily basis the global distribution 

of ice clouds, which affect the Earth’s emission of IR energy into space and its reflection and 

absorption of the Sun’s energy over broad areas. However, the mission concept is rapidly evolving 

and a new mission architecture is being conceived, the Cloud Convection Aerosol Precipitation 

(CCAP) mission. 

 

4 SENSORS PLANNED FOR THE NEAR FUTURE 

The future development of quantitative precipitation estimates from satellite observations is pursued 

in the near future with a twofold strategy, foreseeing both the continuation of operational missions 

for hydrometeorological applications and the development of innovative sensors. This section 

summarizes the planned activities of the main space agencies as reported by the Coordination Group 

for Meteorological Satellites (CGMS, 2018) and by the Satellite Status web page maintained by 

WMO on behalf of CGMS (http://www.wmo.int/pages/prog/sat/satellitestatus.php). 

EUMETSAT is continuing the development of the Meteosat Third Generation (MTG) satellite 

system, whose operational exploitation is planned in the 2021-2042 timeframe 

(https://www.eumetsat.int/website/home/Satellites/FutureSatellites/MeteosatThirdGeneration/inde

x.html). Six new geostationary satellites will be launched from 2021 within the MTG program, 

including four imaging satellites (MTG-I) (20 years of operational services expected) and two 

sounding satellites (MTG-S) (15.5 years of operational services expected). The configuration 

foresees three in-orbit satellites with a prime MTG-I satellite delivering the full disk service, a 

second MTG-I satellite for the RSS, and an MTG-S satellite providing the new sounding services. 

The full disk service will be provided at improved temporal and spatial resolutions through the 

Flexible Combined Imager (FCI) with a basic repeat cycle of 10 min, as well as the European 

Regional-Rapid-Scan (RRS), which covers one-quarter of the full disc, and will be performed at a 

repeat cycle of 2.5 min. The FCI will take measurements in 16 channels, eight placed in the solar 

spectral domain between 0.4 and 2.2 µm, delivering data with a 1 km spatial resolution, and eight 

channels in the thermal spectral domain between 3.8 and 13.3 µm, delivering data with a 2 km 

spatial resolution. In the RRS mode two channels in the solar domain will be disseminated with the 

spatial resolution of 0.5 km, whereas other two channels in the IR will have a spatial resolution of 

http://www.wmo.int/pages/prog/sat/satellitestatus.php
https://www.eumetsat.int/website/home/Satellites/FutureSatellites/MeteosatThirdGeneration/index.html
https://www.eumetsat.int/website/home/Satellites/FutureSatellites/MeteosatThirdGeneration/index.html
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1 km. The MTG-I platforms will host also a new Lighting Imager sensor (LI). MTG‐S will carry a 

hyperspectral Infrared Sounder (IRS) to provide information on horizontally, vertically, and 

temporally resolved water vapor and temperature structures (full disk coverage every 60 min, 

Europe region in 30 min). IRS will work over Europe in synergy with the Copernicus Sentinel-4 

instrument Ultraviolet, Visible and Near-Infrared Sounding (UVN) designed for geostationary 

chemistry applications. 

The continuation of the GEO satellite constellation activities will be ensured by the other main space 

agencies as well. The availability of the GOES satellite system will be extended by NASA-NOAA 

through 2036 by means of GOES-T and -U satellites. In 2018 JMA started considering the next 

geostationary satellite program, scheduling by 2023 the beginning of manufacturing the GEO 

satellites that will be the successors to Himawari-8 and -9, and aiming to put them into operation 

around 2029. The second generation of the GEO FY-4 series operated by CMA is expected to 

continue until 2030 with the FY-4 B/C/D/E satellites. An upgraded version of the AGRI sensor is 

expected, by introducing additional channels at 7.24-7.60 μm and at 2.1 and 3.5 μm (spatial 

resolution 2 km). 

The second-generation of the EUMETSAT Polar System (EPS‐SG) program will provide a 

continuation and enhancement of the service from the mid-morning polar orbit in the 2021-2040 

timeframe. The EPS-SG will deploy two platforms, i.e. MetOp-SG A and B (Accadia et al., 2016), 

providing a new support to precipitation estimate through the Microwave Sounder (MWS) on board 

to MetOp-SG A, the Microwave Imager (MWI) and the Ice Cloud Imager (ICI) both carried on 

MetOp-SG B satellites. MWS is a cross-track scanning radiometer with a direct heritage from the 

microwave instruments AMSU-A and MHS on board EPS and NOAA satellites. Its channels from 

23.8 to 229 GHz are similar to the ones of the ATMS on board the NOAA/NASA SNPP satellite 

with the additional channel at 229 GHz to provide information on cirrus clouds. An innovative set 

of channels in the oxygen absorption band near 50-60 GHz and 118 GHz will enable the retrieval 

of low precipitation and snowfall by MWI, a conical scanning radiometer with a spectral coverage 

from 18 to 183 GHz. The ICI is a millimeter and sub-millimeter wave conically scanning radiometer 

with 11 channels from 183 GHz to 664 GHz (Buehler et al., 2012). Complementarily to the MWI 

instrument, ICI will measure primarily ice clouds, providing also vertical profiles of hydrometeors 

(cloud ice, graupel, snow, rain and cloud liquid), instrumental for the solid precipitation retrieval. 

The NOAA-NASA collaborative program Joint Polar Satellite System (JPSS) is the new generation 

of US polar-orbiting operational environmental satellites in the early afternoon sun-synchronous 

orbit. The JPSS satellite series started in 2011 with the launch of the SNPP mission recently 

followed by the JPSS-1/NOAA-20 satellite (2017). For the next future the program will proceed 

with the JPSS-2, 3, and 4 missions tentatively planned for launch in 2022, 2026, and 2031, 

respectively. With respect to the precipitation estimate, JPSS missions will ensure the continuation 

of the ATMS acquisitions started since the SNPP mission. 

The second-generation LEO satellites FY-3 of CMA are expected to continue beyond 2024 through 

a sequence of satellites positioned in the early-morning, morning, and afternoon polar orbits (from 

the FY-3 E up to FY-3 H), providing continuity to the observations of the MWHS-2 and MWRI 

instruments for the precipitation retrieval. Another CMA satellite program foresees the deployment 

of a series of operational satellite at low-inclination specifically addressing precipitation observation 

in continuity with the GPM mission concept, i.e. the FY-3 Rainfall Measurement (FY-3RM). The 

satellite payload should include the MWRI and MWHS sensors together with a double frequency 

Ku/Ka precipitation radar and the time frame of the program would be 2020-2028. 

Considering the satellite active sensors, the joint European Space Agency (ESA)/JAXA mission 

EarthCARE is expected to be launched in 2022. EarthCARE can be considered an evolution of the 
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very successful CloudSat and CALIPSO joint activity within the frame of the A-Train mission 

(Illingworth et al., 2015). EarthCARE will carry four instruments on a single platform in a 393-km 

orbit, among which the 355-nm high-spectral-resolution lidar and the CPR at 94.05 GHz, the first 

satellite radar with Doppler capability. This unique feature will allow for collecting information on 

convective motions as well as ice and rain fall speeds, leading to improved retrievals of drizzle, 

rainfall, and snowfall rates. Moreover, the additional 7 dB of sensitivity (a factor of 5) compared 

with the CloudSat radar will enable a better detection of thin ice clouds and much more low-level 

stratus and stratocumulus clouds. 

 

5 REQUIREMENTS FOR FUTURE MISSIONS AND 

RECOMMENDATIONS 

Understanding and predicting changes in weather, hydrology, and the climate system is a complex 

task, which underlies different needs as to the frequency of observations, their timeliness, their 

resolution and their uncertainty. We will now briefly examine the different requirements in order to 

receive some guidance for future mission design. 

Weather monitoring and forecasting is a complex task that does not easily reduce to a unique set of 

requirements, as there is great dependence on the application area: global NWP, high resolution 

NWP, nowcasting, agricultural meteorology, and ocean state forecasts. The WMO OSCAR is the 

reference for the requirements expressed in terms of six criteria: uncertainty, horizontal resolution, 

vertical resolution, observing cycle, timeliness and stability. For each criterion three values are 

indicated: threshold (minimum value to be met for the data to be useful), breakthrough (intermediate 

level representing a significant improvement for the targeted application), and goal (requirement 

above which no further improvements are necessary). If one examines the OSCAR tables for surface 

precipitation intensity (liquid or solid), the values associated with “goal” capabilities vary in the 

following way: horizontal resolution (from 0.25 km of agricultural meteorology to 5 km of global 

NWP), observing cycle (from 5 min for nowcasting and ocean to 60 min of global NWP), timeliness 

(from 5 min of nowcasting and ocean to 15 min of high resolution NWP), uncertainty (0.1 mm h-1 

for all applications). The confidence level for liquid precipitation in all these cases is between firm 

(result of impact studies on actual data used in actual applications) and reasonable (not firm, but 

based on a strong heritage of experiments with similar data). In the case of solid precipitation 

intensity at the surface, the confidence level for high resolution NWP is only tentative (positive 

impact expected but not yet validated due to lack of suitable data). From this analysis, it is clear that 

the improvement of future precipitation missions with regard to observing cycle, resolution, 

timeliness and uncertainty level are deemed necessary. Because requirements focus on parameters 

rather than on individual missions, the overarching goals in the case of precipitation tend to focus 

both on high quality individual products as well as merged products. Note that robustness of the 

constellation of passive and active sensors in orbit is a key issue for ensuring the necessary 

continuity of products (Huffman et al., 2016). 

Hydrologic predictions try to meet the fundamental societal need for water, which remains insecure 

in large portions of the Earth. Needs vary from monitoring and predicting water availability in water-

scarce areas (especially developing countries) to ensuring an efficient use of water where it is often 

used without adequate plans (most of the industrialized countries). Accurate observations are thus 

a key element of hydrologic predictions (e.g., Lettenmaier, 2017). The US Decadal Survey (2017) 

underlines the importance of monitoring and modeling the water cycle “…from the accurate 

quantification of water and energy fluxes at the river basin scale, to accurate snow water equivalent 
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measurements for water supply forecasting, to improved drought monitoring, to flash flooding 

hazard prediction, to changes in land use and water quality in highly coupled human-natural 

systems”. And it stretches from recommendations to extend ongoing measurements, to new 

endeavors in detecting the phase (rain or snow) of precipitation, to measuring snow water equivalent 

and evapotranspiration, to new fields for application of remotely sensed data, such as water quality, 

groundwater recharge, effects of urbanization, water modulated biogeochemical cycling, and 

prediction of hazard chains. Improvements in our observing capabilities from space relate not only 

to precipitation (rainfall and snowfall), but snow water equivalent (still quite elusive especially in 

mountain areas in spite of our ability to estimate snow cover), evapotranspiration, snow and ice 

melt, and recharge and withdrawal of groundwater. Advances are planned in the areas of 

precipitation, river discharge, evapotranspiration, total storage estimates, soil moisture, and surface 

water storage (lakes, wetlands and reservoirs) (Lettenmaier et al., 2015), while the US Decadal 

Survey (2017) further highlights the need for snow water equivalent measurements. It is thus very 

relevant to conceive new precipitation missions along a future refinement of other present key 

hydrology-related missions such as the Gravity Recovery and Climate Experiment (GRACE), and 

the Soil Moisture and Ocean Salinity (SMOS) and Soil Moisture Active Passive (SMAP), or even 

the Snow Water Equivalent mission that is possible from the Decadal Survey recommendations. 

This will allow for a much more integrated view of precipitation in the Earth System, as well as 

monitoring of extreme precipitation in the context of its causes and consequences. 

A better understanding of the climate system is critical for global change sustainability and thus for 

long term decision making. The World Climate Research Program (WCRP) has identified seven 

Grand Challenges in climate science (https://www.wcrp-climate.org/grand-challenges/grand-

challengesoverview), including three that are directly related to observations of precipitation. These 

include “understanding and predicting the extreme weather”, “clouds, circulation and climate 

sensitivity” and “water for the food baskets of the world”. Each of these challenges, in turn, can be 

addressed in three steps: monitoring the Earth, understanding the process, and improving predictions 

(Weatherhead et al., 2017). For the first two of them, the contribution of satellite observations is 

expected to be paramount, while further combination of observation and numerical model research 

is important for the third step. These scientific/societal demands are broken down into specific 

science questions, such as: How does climate change affect precipitation, i.e. “is the total rainfall 

amount increasing?” or “is the extreme rainfall event increasing?” Another question is: “how 

climate change affects the global water cycle?” To answer these questions, a deeper understanding 

of each element of the atmospheric water budget (e.g., water vapor, clouds and precipitation), 

hydrological processes (e.g., runoff, floods and droughts, and biogeoscience aspects such as 

vegetation and forest), must be combined into a unified view. In particular, it will become necessary 

to better understand clouds and precipitation processes, which will, in turn, require observations of 

the process of changes from clouds to precipitation, as well as coincident three-dimensional 

kinematic observation of convective processes. At the same time future observations will need to 

address fundamental questions that are still not completely answered on: frequency of rain and snow 

episodes (e.g., Trenberth and Zhang, 2018); intensity and phase (e.g., Trenberth et al. 2003); 

frequency and distribution of extremes. Naturally, not all global precipitation products are suitable 

for each of the tasks described above. Guidance is needed by the satellite precipitation community 

on the use of such data sets in data assimilation, model validation and verification and for improving 

physical parameterizations (e.g., Tapiador et al., 2017, 2019). One key aspect that underlies all 

aspects of climate and climate change is the need for long-term precipitation records that have been 

collected for more than 20 years by the TRMM-GPM missions. To extract changes in precipitation 

due to climate change by observation, accurate long-term (more than 30 years) data are necessary 

https://www.wcrp-climate.org/grand-challenges/grand-challengesoverview
https://www.wcrp-climate.org/grand-challenges/grand-challengesoverview
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to reduce the effect of long-term variation of the earth (El Niño Southern Oscillation-ENSO, solar 

cycle, Arctic Oscillation, etc.). Given the time series that is available today, a significant 

requirement is thus to maintain and extend this time series of high-quality precipitation observations. 

The plan for the proposed implementation of a global observing system for climate was devised by 

the Global Climate Observing System (GCOS, 2016) guiding the development of such a system and 

setting out what is needed to meet increasing and more diverse needs for data and information, 

including for improved management of the impacts and consequences of climate variability and 

current and future climate change. 

In recent years it has become increasingly clear that direct contributions to societal needs other than 

meteorology, hydrology and climate are also required (e.g., Kucera et al., 2013; Kirschbaum et al., 

2017; Skofronick-Jackson et al., 2017) as the mission of the Earth observation satellite, and 

construction of a data system for precipitation information on a real time basis is also required for 

the future mission. At the same time, the development plan should fit the 2030 Agenda for 

Sustainable Development and the Sustainable Development Goals (SDGs) set up by the Committee 

on Earth Observation Satellites (CEOS) towards a sustainable society (Paganini et al. 2018). Each 

goal includes a set of targets countries are working to achieve by 2030. Each target in turn includes 

a set of indicators that define the quantitative measurement for the targets. Satellites, small satellites 

in particular, contribute to reaching the goals and to monitor the progress towards the targets (Wood 

and Stober, 2018; Madry et al., 2018). Outstanding examples of societal needs met by precipitation 

products are, among others: landslide potential, fire monitoring, high-resolution estimates of 

terrestrial surface heat and moisture, pests and disease control (vector- and water-borne), agriculture 

and food production (fight against famine), influence on ocean salinity, and atmospheric aerosol 

scavenging. 

The WMO Integrated Global Observing System (WIGOS; WMO, 2017) has recently anticipated 

the general trends of the evolution of user requirements in 2040 for space missions in support of 

weather, water, climate and related environmental applications. It is expected that users will require: 

 higher resolution observations, better temporal and spatial sampling/coverage, 

 improved data quality and consistent uncertainty characterization of the observations, 

 novel data types, allowing insight into Earth system processes hitherto poorly understood, 

 efficient and interoperable data representation, given the exponential growth of data 

volumes. 

As to precipitation, in particular, the WIGOS document underlines that “sub-mm imagery for cloud 

microphysical observations (e.g., phase detection) will be beneficial for cloud modelling and 

atmospheric water cycle modelling”. At the same time, “combinations of active and passive 

measurements with formation-flying spacecraft provide novel insight into physical processes in the 

atmosphere: one could also expect that those measurements would help to better define atmospheric 

initial conditions for numerical modelling; better coverage in space and time with such 

measurements will be beneficial for capturing rapid hydrological processes such as the temporal 

evolution of water vapour fields and clouds”. 

In summary for precipitation, the need for a better definition of the atmospheric state and the vertical 

structure of clouds and precipitation (Stephens and Kummerow, 2007) to improve the quality of the 

information extracted from satellite observations is the overarching reason for combining multiple 

frequency active and passive measurements that offers some hope for constraining the atmospheric 

states needed to derive unique rain and snow rate signals. Radar improvements and the launch of 

constellations of high-quality radiometers for an adequate space-time sampling are likely to provide 

the observations needed for a substantial step forward in the quality of the retrieval algorithms. 
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This framework will surely evolve from the above concepts to meet the above described needs for 

a precipitation-oriented constellation of satellites. While the missions may not be fully mature (or 

at least not mature enough to have a timeline associated with them), the goals are well defined, and 

the community is moving forward from the scientific and technological points of view. 
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7 ACRONYMS 
 

ABI    Advanced Baseline Imager 

ACE   Aerosol-Cloud-Ecosystems mission 

ADEOS  Advanced Earth Observing Satellite 

AGRI   Advanced Geostationary Radiation Imager 

AHI   Advanced Himawari Imager 

AMI   Advanced Meteorological Imager 

AMSR-2  Advanced Microwave Scanning Radiometer-2 

AMSU-A  Advanced Microwave Sounding Unit–A 

ATMS   Advanced Technology Microwave Sounder 

CALIOP  Cloud-Aerosol Lidar with Orthogonal Polarization 

CALIPSO  Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observations 

CCAP   Cloud, Convection, Aerosol and Precipitation mission 

CDRD   Cloud Dynamics and Radiation Database 

CEOS   Committee on Earth Observation Satellites 

CMA   China Meteorological Administration 

CNES   Centre National d’Études Spatiales 

COMS   Communication, Ocean, and Meteorological Satellite 

CONUS  Conterminous United States 

COSMIC-2  Constellation Observing System for Meteorology, Ionosphere and  

Climate-2 

CPR   Cloud Profiling Radar 

DMSP   Defense Meteorological Satellite Program 

DoD   Department of Defense 

ECMWF  European Centre for Medium-range Weather Forecasts 

ENSO   El Niño Southern Oscillation 

EO   Earth Observation 

EOS   Earth Observation System 

EPS-SG  EUMETSAT Polar System-Second Generation 

ESA   European Space Agency 

ESTO   Earth Science Technology Office 

EUMETSAT  European Organization for the Exploitation of Meteorological Satellites 

EVI-3   Earth Venture-Instrument-3 program 

FCI   Flexible Combined Imager 

FY   Feng-Yun 

FY-3RM  FY-3 Rainfall Measurement 

GCM   General Circulation Model 

GCOM-W  Global Change Observation Mission for Water 

GCOS   Global Climate Observing System 

GEO   Geostationary Earth Orbit 

GIIRS   Geo Interferometric Infrared Sounder 

GK-2A  GEO-KOMPOSAT-2A 

GMI   GPM Microwave Imager 

GOES   Geostationary Operational Environmental Satellite 

GPM   Global Precipitation Measurement mission 

GPROF  Goddard Profiling algorithm 
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GRACE  Gravity Recovery and Climate Experiment 

HEMT   High Electron Mobility Transistors 

ICI   Ice Cloud Imager 

IFOV   Instantaneous Field of View 

IODC   Indian Ocean Data Coverage 

IPWG   International Precipitation Working Group 

IR   Infrared 

IRS   IR Sounder 

ISRO   Indian Space Research Organization 

ISS   International Space Station 

IWP   Ice Water Path 

JAXA   Japan Aerospace Exploration Agency 

JMA   Japan Meteorological Agency 

JPL   Jet Propulsion Laboratory 

JPSS   Joint Polar Satellite System 

KaHS   Ka High Sensitivity scan (GPM) 

KaMS   Ka Matched Scan (GPM) 

KMA   Korea Meteorological Administration 

KOMPSAT-2A Korea Multi-Purpose Satellite-2 

LEO   Low Earth Orbit 

LI   Lightning Imager 

LMI   Lightning Mapping Imager 

MHEMT  Metamorphic HEMT 

MHS   Microwave Humidity Sounder 

MI   Meteorological Imager 

MM   MilliMeter wave radiometer 

MSU   Microwave Sounding Unit 

MTG   Meteosat Third Generation 

MTG-I   Meteosat Third Generation-Imaging 

MTG-S  Meteosat Third Generation-Sounding 

MW   Microwave 

MWHS-2  Micro-Wave Humidity Sounder-2 

MWI   Microwave Imager 

MWIR   Medium-Wavelength IR 

MWRI   Micro-Wave Radiation Imager 

MWS   Microwave Sounder 

NASA   National Aeronautics and Space Administration 

NIR   Near IR 

NOAA   National Oceanic and Atmospheric Administration 

NWP   Numerical Weather Prediction 

OLYMPEX  Olympic Mountain Experiment 

OSCAR  Observing Systems Capability Analysis and Review Tool 

OSSI   Operational Service Status Indicator 

PMW   Passive Microwave 

PNPR   Passive microwave Neural network Precipitation Retrieval 

PR   Precipitation Radar 

PSD   Particle Size Distribution 
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RainCube  Radar in a CubeSat 

RPM   Revolutions Per Minute 

RRS   Regional Rapid Scan 

RSS   Rapid Scanning Service 

SAPHIR  Sondeur Atmosphérique du Profil d’Humidité Intertropicale par Radiométrie 

SDG   Sustainable Development Goals 

SEP   Space Environment Package 

SEVIRI   Spinning Enhanced Visible and Infra-Red Imager 

SMAP   Soil Moisture Active Passive 

SMOS   Soil Moisture and Ocean Salinity 

SSM/I   Special Sensor Microwave/Imager 

SSMIS   Special Sensor Microwave-Imager/Sounder 

SSM/T   Special Sensor Microwave/Temperature 

SNPP   Suomi National Polar-orbiting Partnership 

SSP   Sub Satellite Point 

SWIR   Short-Wavelength IR 

TEMPEST-D  Temporal Experiment for Storms and Tropical Systems–Demonstrator 

TIR   Thermal IR 

TIROS   Television and Infra-Red Observation Satellite 

TMI   TRMM Microwave Imager 

TRMM  Tropical Rainfall Measuring Mission 

TROPICS  Time-Resolved Observations of Precipitation structure and storm Intensity  

with a  Constellation of Smallsats 

TWICE  Tropospheric Water and cloud ICE 

UTLS   Upper Tropospheric/Lower Stratospheric 

UVN   Ultraviolet, Visible and Near-Infrared Sounding 

VIS   Visible 

WCRP   World Climate Research Program 

WIGOS  WMO Integrated Global Observing System 

WMO   World Meteorological Organization 
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1. INTRODUCTION 

 

In order to derive requisite microphysical, meteorological and climatological parameters from 

measured quantities such as radar reflectivity, it is necessary to apply an algorithm that relies upon 

utilizing recognized relationships between the quantities being measured and the parameters being 

sought. This process constitutes a retrieval, and the derived parameters result from the best fit that 

the algorithm can provide by operating on the input data. This method of deriving useful parameters 

from measured quantities may also be applied to spaceborne and airborne radars and radiometers. 

Such algorithms may function, for example, by applying a straightforward relationship between the 

measured radar reflectivity and the rain rate (L’Ecuyer and Stephens, 2002). However, such 

approaches, although relatively easy to implement and generally computationally inexpensive, may 

encounter difficulties imposed by the assumptions that go into them. In the case of rain, the 

particular drop size distribution used will have a significant bearing on the nature of the relationship 

between the rain rate and the reflectivity. An alternative solution that has found favour within many 

areas including the cases of radiometer- and radar-based retrievals, and hence which has been 

applied repeatedly and for a variety of situations, e.g. Mitrescu et al. (2010), is the optimal estimation 

approach (Rogers, 1976; 2000). This method uses a forward model to minimize the cost function, 

which, for the example of radar-based retrievals, contains among other parameters the measured 

reflectivity, the modelled reflectivity, an a priori error covariance matrix, and an error covariance 

matrix associated with the observations. In order for accurate results to be obtained using this 

method, it is essential that adequate error covariance matrices be used. As such, it is possible to 

control precisely the information being used in the retrieval problem, by filtering out that which is 

less reliable. The optimal estimation procedure then seeks the solution through successive iterations 

and does not require the introduction of a separate inversion model as it only uses the forward model 

formulation. A clear advantage of such an approach resides in its simplicity, flexibility and 

universality. Moreover, additional constraints can easily be added or removed from the particular 

formulation being utilized. However, for complex problems, optimal estimation may become 

computationally demanding, e.g. for deep cloud structures, since it requires several matrix 

computations. For example, for the situation deep within the cloud, the effects of multiple scattering 

become important and the iterative method quickly becomes unstable as the cost function increases 

dramatically. In this case, the value of the cost function may be used to identify when multiple 

scattering becomes significant. 

The retrieval algorithms utilized by spaceborne and airborne radar and radiometer systems, 

including the systems used by the CloudSat and GPM missions, will be covered in the rest of this 

report. Section 2 will cover algorithms used by passive microwave sensors. The discussion 

following this will then turn to radar-only algorithms using single-frequency (section 3), dual-

frequency (section 4) and triple-frequency (section 5) retrieval methods. Covered will be techniques 

relating to the Cloud Profiling Radar (CPR) aboard the CloudSat satellite, and the Dual-frequency 

Precipitation Radar (DPR) aboard the GPM Core satellite. This report will conclude its discussion 

of algorithms with section 6, which covers algorithms relating to a combined radar-radiometer 

approach. Finally, comparisons between results obtained using different precipitation algorithms are 

presented in section 7. 
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2. PASSIVE MICROWAVE PRECIPITATION RETRIEVAL ALGORITHMS 

 

Remote sensing of precipitation from passive microwave radiometers is based on the complex 

interaction of microwave radiation emitted by the Earth’s surface with gases (oxygen and water 

vapour) and liquid and solid hydrometeors within the clouds. 

The emitted radiation from the surface depends on the surface emissivity and surface temperature. 

The frequency-dependent surface emissivity depends primarily on the dielectric properties of the 

material and the roughness of the surface (Ulaby et al., 1986). Very large distinctions are visible 

between ocean, land, and ice/snow covered surfaces.  In particular, oceans have relatively low 

emissivity across the microwave spectrum while for land it is considerably higher (closer to unity) 

but sensitive to soil moisture, particularly for lower frequencies (i.e. < 10 GHz).  Snow- and ice-

covered surfaces can vary significantly based on the snow and ice properties.   

The incident radiation is absorbed and/or scattered by the atmospheric constituents.  The absorption 

by gases is shown in Figure. 1. There is some continuum absorption, modest for frequencies below 

100 GHz, a weak water vapour absorption band at 22.235 GHz, a strongly absorbing oxygen band 

between 54 and 60 GHz, another oxygen band at 118 GHz and a second, stronger water vapour 

absorption band at 183.31 GHz. 

   

 
 

Figure. 1: Atmospheric transmittance (oxygen and water vapour) as a function of frequency in the 

microwave region. (From An Introduction to Atmospheric Radiation, 2002, Liou, K. N. p. 415.) 

 

For water the dielectric property is responsible for very broad absorption across the microwave 

frequency range, increasing with frequency, while ice exhibits relatively little absorption, 

particularly at the lower end of commonly used frequencies (typically < 10 GHz). 

As long as water droplets are small compared to the wavelength (generally true for cloud drops in 

the microwave regime), Rayleigh absorption and scattering apply.  In this regime absorption is 

directly proportional to the liquid water content of the cloud with no sensitivity to drop sizes. This 

makes it difficult to separate small non-precipitating drops from larger precipitating ones, but makes 

the retrieval of liquid water content over radiometrically cold oceans relatively straightforward. 

Scattering is sensitive to the cloud drop sizes but is relatively small for cloud particles and raindrops 

at frequencies below 30 GHz.  Higher frequencies are needed before the scattering signal by liquid 

hydrometeors can be differentiated from instrument noise or background surface.  
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For ice particles, the imaginary component of the refractive index is quite small and absorption is 

negligible. The scattering behaviour is similar to that of water which implies little scattering below 

30 GHz but increased effects as the frequency increases. 

Once particles get larger, they enter into the Mie (1908) regime.  Here, the absorption and scattering 

relations become more complex.  Details of the particle size, shape, and density become important. 

A number of approaches have been used to compute absorption and scattering parameters for ice 

particles at microwave frequencies (e.g. Liu, 2004; Kuo et al., 2016). 

The earliest attempts to retrieve precipitation from passive microwave sensors in space can be traced 

back to the Electronically Scanning Microwave Sensor, ESMR, (Wilheit, 1972) aboard the Nimbus-

5 Satellite launched in 1972, operating at 19.35 GHz. At this frequency, the ocean appears cold, and 

water vapour, clouds, and precipitation all act to increase the observed radiances, or warm the 

brightness temperatures. The early emission-based algorithms tended to use thresholds of a 

minimum temperature above which the rainfall would be assigned to the pixel based upon the excess 

Tb above the threshold.  At the same time, a number of groups, including Savage and Weinman 

(1975) began to show that brightness temperatures could be reliably calculated using radiative 

transfer models for cloud and precipitation. Such studies hinted that more quantitative approaches 

for rainfall estimation were possible over oceans.  With the launch of ESMR on Nimbus-6 in 1975 

(Wilheit, 1975), operating at 37 GHz, the first studies investigated the scattering signal observed 

from space in the presence of intense precipitation, even though it was often not visible over ocean.   

The next milestone in the development of rainfall algorithms came with the launch of the Scanning 

Multichannel Microwave Radiometer (SMMR) on Nimbus-7 (Gloerson and Hardis, 1978).  SMMR 

was a 5-channel instrument, with frequencies at 6.6, 10.7, 19.35, 23 and 37 GHz, measuring both 

horizontal and vertical polarizations at a constant incidence angle of approximately 49° from nadir.  

Multiple channels on SMMR made it possible to simultaneously retrieve a number of geophysical 

parameters.  With multiple channels and polarizations, a better surface characterization, and the 

water vapour information from the 23 GHz channel, allowed for more physical retrievals of clouds 

and precipitation over oceans. Most methods were based on linear regression against a number of 

channel combinations either based on radiative transfer models (Chang and Milman, 1982), or on 

empirical approaches Alishouse et al., (1990). From the scattering perspective, Rodgers and 

Siddalingaiah (1983) used the 37 GHz channels together with theoretical computations performed 

earlier by Savage and Weinman (1975) to develop a rain classification algorithm over land, 

exploiting polarization difference (large for wet or water-covered surfaces, and small or zero when 

the emission is due to rain drops).  

Spencer (1986) correctly noted that the 37 GHz of SMMR had a non-unique relationship with 

precipitation – increasing first as cloud water and light precipitation filled the field of view, and then 

decreasing again as more and more ice scattering associated with convection filled the field of view.  

The polarization difference, however, continued to decrease as the rainfall increased. Based upon 

comparisons with ground-based radar data from different parts of the world, an equation for rainfall 

based on the polarization difference at 37 GHz was derived. Starting with the SMMR era, more 

physical algorithms started being developed (e.g., Olson, 1989) where the inversion techniques were 

based on the minimization of the difference between observed TBs and simulated TBs derived from 

radiative transfer computations.  

The launch of the first Special Sensor Microwave/Imager (SSM/I) in 1987 (Hollinger, 1987) 

generated great interest in precipitation retrieval, thanks to the availability of 7 channels (19.35, 

22.235, 37.0 and 85.5 GHz, all in horizontal and vertical polarization, except 22.235 GHz) and 

higher spatial resolution.  Several studies were dedicated to demonstrate SSM/I potential for 

quantitative precipitation estimates (e.g., Mugnai et al., 1990; Smith et al., 1992, Wilheit et al., 
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1994). The various algorithms designed for SMMR were adapted to SSM/I, and new approaches 

were developed to exploit the higher frequency channels.  With SSM/I the microwave remote 

sensing of precipitation entered a new era, mostly because of its long, and stable time series for over 

20 years.  Instead of reviewing all algorithms that were developed in this era, only a few select 

examples are presented here that represent the different types of algorithms that were developed. 

Wilheit et al. (1991) developed a technique for rainfall rate retrieval based on the combination of 

TBs at 22 GHz and 19 GHz (vertical polarization channels) (2Tb19V – T22V). This channel 

combination showed a well defined peak corresponding to non-raining conditions, followed by a 

more or less linear portion (in log space) corresponding to precipitating pixels. The technique 

worked only over ocean, where the emission signal was evident, and it required data aggregated at 

monthly, 5° × 5°, scale to ensure robust relations between brightness temperatures and rainfall rate 

distributions.  Versions of this algorithm formed the basis for the Global Precipitation Climatology 

Project (GPCP; Adler et al., 2003) for the entire lifecycle of the SSMI and future SSMIS instrument 

series, as well as early TRMM and AMSR-E products. 

Scattering-based methods grew significantly in the SSM/I era due to the addition of the 85 GHz 

channels that exhibit much greater scattering signals than 37 GHz (SMMR).  Ice scattering processes 

at 85 GHz in deep convection cause brightness temperatures to fall below 100 K and even below 50 

K on rare occasions.   To exploit this scattering signal, Spencer (1989) defined the Polarization 

Corrected Temperature (PCT) that remains broadly in use today. The relationship between rain rate 

and PCT was left for the community to adjust, and a series of algorithms quickly emerged (e.g. 

Ferraro et al., 1996; Kidd, 1998; Connor and Petty, 1998).  While these algorithms all tend to use 

more than one channel to discriminate raining scenes or to provide additional information about the 

background state, the rainfall determination remained largely a function of the 85 GHz channel.  

Another category of algorithms was the physically based retrieval approach, such as that used by 

Wentz and Spencer (1998).  The algorithm simultaneously retrieves near-surface wind speed, 

column water vapour, column-integrated cloud water, and rain rate over water.  It does so by relying 

on the fact that the brightness temperature is directly related to the transmittance of water in the 

atmosphere.  The first step in the retrieval is thus to simultaneously retrieve this atmospheric 

transmittance, along with the water vapour, and surface properties - wind speed, and effective 

radiating temperature.  This is possible as each of the individual parameters has a unique radiometric 

signature in the 19- through 37-GHz range.  Once this is accomplished, the difference between the 

19 and 37 GHz channels is used to determine the beam filling, or inhomogeneous rain effect.  A 

correction is applied for the total attenuation due to liquid.  The formulation then used is Mie theory 

and an assumed relationship between cloud- and rain-water to derive a column rain water and, 

together with an assumed rain column height based upon the SST, a surface rainfall rate. 

The simultaneous inversion work that was started by Olson (1987) continued into the SSMI era, but 

the minimum variance solution was more or less replaced by Bayesian schemes.  The overarching 

difficulty with the minimum variance schemes was ultimately the severely under-constrained nature 

of the retrieval (Stephens and Kummerow, 2015).  There are simply far too many variables in a 

precipitating cloud related to the hydrometeor types and their vertical distribution, than can be 

uniquely retrieved with radiometers carrying a limited number of frequencies.  More investigators 

adopted Bayesian schemes (e.g. Kummerow 1994; Evans et al., 1995; Marzano et al., 1999). The 

greatest challenge in Bayesian schemes was to find the correct distribution of observed rainfall rates. 

This relied mostly on various cloud resolving model (CRM) output to represent hydrometeor 

profiles that would be observed in nature, coupled with a radiative transfer model (RTM).  CRM 

model-based approaches had to tackle the critical issue of being representative of actual 

observations and to ensure that Bayesian schemes accounted for uncertainties in both the modelled 
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microphysical profiles and the radiative transfer modelling used to simulate multi-channel 

brightness temperatures (Panegrossi et al., 1998). However, since cloud resolving models of that era 

were regional and typically simulated only individual precipitating cloud systems, the Bayesian 

scheme needed to first screen non-raining pixels so that these would not be included in the statistics.  

Much of the early work was thus focused on producing realistic cloud model simulations and 

screening of non-raining pixels, particularly over complex coasts and topography. Uncertainties had 

to be estimated as they include many of the assumptions in the cloud resolving models and radiative 

transfer computations and remain an area of research 20 years after the first Bayesian schemes were 

introduced. These early radiative transfer computations formed the basis for most of today’s 

“satellite simulators” in the microwave regime (e.g. Matsui et al., 2013) that simulate observable 

radiances from cloud resolving model output. 

With the advent of the TRMM satellite, in 1997, a new era started. Algorithms originally developed 

for SSM/I were adapted to the TRMM Microwave Imager (TMI) and, successively, also to the 

SSMIS that succeeded the SSM/I in late 2005, and then to the Advanced Microwave Sounding 

Radiometers on EOS (AMSR-E). The focus turned more to physical algorithms such as Wilheit et 

al., (1991) that could produce uniform results across the entire constellation of passive microwave 

sensors. 

Over-ocean rainfall retrieval algorithms such as the Remote Sensing Systems (RSS) also continued 

developing (Wentz and Spencer, 1998), later re-named the Unified Microwave Ocean Retrieval 

Algorithm (UMORA; Hilburn and Wentz, 2008).  The algorithm uses the 19 and 37 GHz 

observations common to a wide variety of microwave sensors (AMSR, GMI, SSMI, SSMIS, TMI).  

The small differences in frequency and incidence angle present between these sensors are removed 

using the RSS radiative transfer model (Meissner and Wentz, 2012; Wentz and Meissner, 2016). As 

before, atmospheric transmittance is estimated from the difference between the vertically and 

horizontally polarized brightness temperatures (Tbs), while beam filling effects are corrected for by 

using the ratio of 19 and 37 GHz absorption that is used to infer the sub-pixel variance of absorption.  

Improvements (Hilburn and Wentz, 2008) also incorporated the effects of footprint size, in order to 

remove systematic biases among rain retrievals from the various sensors.  The resulting estimate of 

absorption is directly related to the total amount of liquid water path (LWP) in the footprint, but is 

indirectly related to the surface rain rate (RR).  To estimate the RR, the contribution of cloud water 

to the LWP is removed using a global relationship between rain and cloud water.  Then the algorithm 

estimates RR from the rain water by assuming that the liquid is distributed uniformly between the 

surface and the freezing layer estimated from the sea surface temperature.  It is worth mentioning 

that this is a key assumption underpinning all emission-based PWM algorithm, and remains one of 

the greatest unknowns in cloud physics. 

JAXA’s microwave algorithm developed for their GSMAP algorithm (Aonashi et al., 2009) made 

direct use of TRMM’s precipitation radar data to deal with some of the non-uniqueness problems in 

passive microwave inversions.  In their case, mean rainfall profiles were constructed from TRMM’s 

precipitation radar observations and radiative transfer calculations were used to predict observed 

radiances not only for TRMM’s TMI but for all other orbiting radiometers as well. 

The Bayesian approaches that relied heavily on cloud resolving models to provide a priori 

information on cloud structures also began using the TRMM radar provided cloud hydrometeor 

profiles. The Goddard profiling algorithm, GPROF (Kummerow et al., 2015), in particular, was 

adapted for the TRMM and later the GPM imagers and constellation satellites.  The a priori database 

needed to describe Pr(R) came directly from the radar retrievals.  Because the TRMM radar observed 

raining and non-raining pixels in the correct proportions, the GPROF scheme no longer needed to 

screen pixels for rainfall before applying the Bayesian scheme.  While the early versions of GPROF 
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developed for TRMM and AMSR-E (Kummerow et al., 2001) still used scattering algorithms over 

land, that aspect was eventually replaced by a fully parametric Bayesian scheme in the GPM era.  

The fully parametric approach can also be coupled, as was done by Casella et al., (2013; 2017a) to 

more fully exploit meteorological data to help minimize the non-uniqueness of solutions, 

particularly over land areas. 

While the approaches discussed above were generally motivated by and developed for microwave 

imagers, there is a long history of microwave sounders. Operational sounders have typically 

operated in the 54-60 GHz oxygen complex, and the 183 GHz water vapour absorption line to 

retrieve temperature and water vapour profiles. They often also carried lower frequency channels to 

correct for surface radiation, and had window channels mostly at 89 GHz and 150 GHz.   

An early algorithm is due to Spencer (1993) who used relative warming in the histograms of 

channels 1 and 2 (50.3 and 53.74 GHz) of the Microwave Sounding Unit (MSU) to infer the total 

cloud and rain water content of clouds at 2.5° grid scales – that approximate footprint size of those 

channels.  The background temperature fluctuations from the air mass itself were corrected for by 

channel 3 (54.96 GHz) that is sensitive to the temperature itself.  By using a series of seven satellites, 

he was able to produce a climatology of oceanic precipitation from 1978 – 1991. 

With the advent of the Advance Microwave Sounding Unit (AMSU), much higher spatial 

resolutions were available than with its predecessor.  This made scattering approaches feasible.   

Ferraro et al., (2000) used NOAA-15’s AMSU instrument to detect the scattering signal from 

precipitation-sized particles at the 89 and 150 GHz channels.  This algorithm used the scattering 

indices that have been described earlier but separated convective from stratiform rainfall in order to 

account for the difference in the vertical hydrometeor structures of these two types of system. 

Scattering indices were converted to surface precipitation by matching the index to ground-based 

observations over the United States. 

Other approaches were developed to exploit also the opaque channels around 183.31 GHz, 

originally designed to retrieve water vapour profiles, but showing great potential for precipitating 

cloud characterization (Hong et al., 2005) and for precipitation retrieval (Laviola and Levizzani, 

2011). Both emission and scattering algorithms were refined over time but the more physical 

approaches being developed for the microwave imagers were slow to develop because the 

information content pertaining to precipitation was more limited in sounders – particularly over 

oceans where imagers had good information from the emission channels. Among these, approaches 

based on artificial neural networks, successfully applied only to microwave sounders (Surussavadee 

and Staelin, 2008, Sanò et al., 2015, 2016), have been recently applied to imagers (e.g., GMI, as in 

Sanò et al., 2018).  

A unique algorithm that was developed for sounders is the MIRS algorithm (Boukabara et al., 2011). 

MIRS is a 1-D Optimal Estimation (OE) solution that inverts the radiative transfer equation by 

finding radiometrically appropriate profiles of temperature, moisture, liquid cloud, and 

hydrometeors, as well as the surface emissivity spectrum and skin temperature.  As for earlier 

minimum variance solutions, the OE approach minimizes the difference between observed and 

simulated brightness temperatures but includes an a priori term that prevents the solution from 

deviating too far from expected values. While OE procedures, particularly if clouds and 

precipitation are included, usually suffer from insufficient constraints on the solution as described 

earlier, MIRS’s approach to tackle this problem is to constrain the inversion problem by using 

eigenvalue decomposition and employing a limited number of eigenvectors that are consistent with 

the information content present in the observations. It also has the option to use a forecast model to 

provide good a priori information, instead of the default climatology background.  Because of the 

variable-reduction approach, MIRS is highly flexible, and it could be used as a retrieval tool, 
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independent of numerical weather prediction. The MIRS system was implemented operationally at 

the U.S. National Oceanic and Atmospheric Administration (NOAA) in 2007 for the NOAA-18 

satellite. Since then, it has been extended to the microwave sensors aboard Metop-A and B 

(AMSU/MHS), DMSP (SSMIS), SNPP and JPSS (ATMS), as well as to research missions such as 

Megha-Tropiques (SAPHIR). 

Although most passive microwave sensors are equipped with high frequency channels (90-190 

GHz) that are highly sensitive to the scattering of ice hydrometeors, detecting and quantifying 

surface snowfall rates using spaceborne microwave radiometers remains a challenging task 

(Levizzani et al. 2011, Skofronick-Jackson et al. 2017). The low and variable emissivity of snow or 

ice-covered surfaces (e.g., Prigent et al., 2006) can mask snowflake scattering signatures (Ebtehaj 

and Kummerow 2017). In addition, the snow microphysics is very complex and snow precipitating 

systems are often composed of a wealth of snow particles with a variety of densities, shapes, particle 

size distributions and radiative properties (e.g., Kuo et al., 2016). Moreover, supercooled droplets 

and melting snow also frequently occur and can strongly affect the observed signal (Kneifel et al. 

2010; Liu and Seo 2013, Panegrossi et al., 2017). Several model-driven (Skofronick-Jackson and 

Johnson, 2011; Kulie et al., 2010; Eriksson et al., 2015) and empirically driven approaches based 

on DPR or CPR snowfall observations (Liu and Seo, 2013; You et al., 2017; Panegrossi et al., 2017; 

Takbiri et al., 2019), have provided instructive insights on microwave multi-frequency signals 

associated with snowfall in cold regions. Based on these studies snowfall retrieval algorithm have 

been developed, both for imagers (such as You et al., 2015 for SSMIS), and sounders (e.g., Kongoli 

et al. 2003; 2018; Ferrato et al., 2005). These algorithms largely rely on the use of a database or a 

look-up table that relates brightness temperatures of snowing clouds to the spaceborne (or ground-

based) radar snowfall observations, along with ancillary model-derived variables, such as 

atmospheric temperature and moisture profiles. More recently, Rysman et al. (2018) developed a 

new snowfall retrieval algorithm for GMI (SLALOM), suitable also for higher latitudes, based on 

observational datasets built from the CloudSat Cloud Profiling Radar (CPR) snowfall products, and 

model-based environmental conditions, while all GMI channels are exploited for background 

surface characterization and snowfall retrieval.  

Conclusion: Following the TRMM heritage, GPM has employed Bayesian algorithms for 

precipitation retrieval from all constellation radiometers. But, unlike TRMM-era radiometer 

retrievals, which use a model-generated a priori hydrometeor database, GPM radiometer retrievals 

use an observation-constrained global database consistent with GPM Core sensor measurements. 

Since the common hydrometeor database used for constellation radiometer retrievals contains DPR 

information, GPM radiometer retrievals may be characterized as “radar-enhanced”. 
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3. SINGLE-FREQUENCY RADAR ALGORITHMS 

 

Many radar algorithms assume that the particles in the target volume are much smaller than the 

wavelength of the incident radiation and use the Rayleigh approximation for the backscatter cross-

section (L’Ecuyer and Stephens, 2002). At the frequencies used in most spaceborne applications, 

the Rayleigh approximation breaks down in rain, and the scattering properties are more accurately 

described using Mie theory (Mie, 1908). For the Rayleigh approximation, the radar reflectivity is 

obtained from a simple relationship between it and the particle size distribution (e.g. Lhermitte, 

1990; Matrosov et al., 2005). In the Mie regime, this relationship between the reflectivity and the 

particle size distribution is less straightforward due to the more complicated nature of the 

backscattering cross-section. Importantly, the measured radar reflectivity is also affected by 

attenuation of the signal that can occur at higher radar frequencies. 

The profiling capabilities of spaceborne radars were confirmed by the Tropical Rainfall Measuring 

Mission (TRMM), which carried the first radar operating from space that was specifically designed 

for precipitation measurements. One of the first algorithms developed for this 14-GHz (Ku-band) 

precipitation radar (PR) used the TRMM PR rainfall profile algorithm, which selected a drop size 

distribution based on the rain type and the presence or absence of a bright band and corrected the 

drop size distribution based on an estimate of the path-integrated attenuation (Iguchi et al. 2000). 

This algorithm operated iteratively by assuming a power-law relationship between the reflectivity 

and the extinction coefficient. The importance of developing algorithms better suited to combining 

information from a variety of different sources led to the development of a first-generation combined 

PR–TRMM Microwave Imager (TMI) rainfall algorithm. This employed a Bayesian approach to 

retrieve parameters relating to the drop size distribution from PR reflectivities with an estimate of 

the path-integrated attenuation derived from the 10.6-GHz channel of the TMI (Haddad et al. 1997). 

The successful deployment of TRMM was of course followed by the placement into orbit of 

CloudSat, with its 94-GHz (W-band) Cloud Profiling Radar (CPR). Detailed and extensive 

descriptions of CloudSat retrieval algorithms applied to rain have been provided by, for example, 

Austin and Stephens (2001), L’Ecuyer and Stephens (2002) and Leinonen et al. (2016). L’Ecuyer 

and Stephens (2002) state that many radar algorithms assume a particle size distribution (PSD) and 

Rayleigh scattering to obtain relations, usually in the form of a power law, between the rain rate and 

the radar reflectivity and between the rain rate and the extinction coefficient. These are directly 

invertible, allowing the rain rate to be derived from the radar reflectivity measurements. These 

methods allow the problem to be presented in a simple analytical form, which results in a 

computationally quick and relatively simple retrieval algorithm. These assumptions also lead to two 

potential sources of uncertainty: (1) the assumption of a PSD strongly influences the values used to 

specify the power-law relationship, and (2) the Rayleigh assumption is not valid for radars with 

frequencies in excess of 10 GHz, a characteristic of both the TRMM PR and CloudSat CPR. 

The increased complexity of implementing retrieval algorithms at frequencies above 10 GHz 

motivated the adoption of alternative techniques in order to undertake retrievals using single-

frequency observations at these frequencies. One particularly effective method is that of optimal 

estimation based upon a Bayesian formalism (Rodgers, 1976; 1990; 2000; Marks and Rodgers; 

1993) and applications of this (Engelen and Stephens, 1999; Miller et al., 2000). This approach 

allows a degree of generality to be maintained when constructing an appropriate algorithm, which 

permits varying the assumed particle size and shape and facilitates the incorporation of 

complementary information from additional sensors if deemed necessary. 

The general optimal estimation method has been described in detail for retrievals from attenuating 

radars by, for example, L’Ecuyer and Stephens (2002). An appropriate forward model to be used in 
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the retrieval can be selected from criteria such as rain type, freezing level, or the presence of a bright 

band, and uncertainties in the vector of parameters must be explicitly accounted for in the inversion 

approach. As a general comment when considering the probability distributions of the parameters 

being retrieved, Jaynes (2001) argues that the Gaussian distribution is the ‘‘most honest’’ 

representation of errors if only the mean and variance of a probability distribution are known. 

Alternative distributions, unless rigorously justifiable, add spurious information to the retrieval, 

therefore biasing the results. For this reason, uncorrelated and unbiased Gaussian statistics are often 

adopted to ensure that only distribution mean and variance information are introduced in the 

retrieval. The retrieval process may be summarized as follows: 

 Infer an initial rain rate and extinction coefficient for the uppermost rain layer using the 

appropriate Z–R and k–R relations. 

 Correct the measured reflectivity in the next layer for the attenuation due to the one above it 

and determine an initial rain rate and extinction coefficient for that layer. 

 Repeat for all layers, correcting the measured reflectivity of each layer for the attenuation 

due to all layers above it. 

 Using this initial profile of rain rate, simulate reflectivities using the radar forward model. 

 Compute a new rain-rate profile. 

 Iterate until such time as the covariance-weighted square difference between successive 

estimates is much less than the total number of independent variables being retrieved. 

Because of the severity of attenuation by rainfall at high radar frequencies (also in the Ka-band), it 

is not sufficient to rely exclusively on a profile of radar reflectivity to make estimates of rainfall 

profiles. Fortunately, many spaceborne platforms such as TRMM offer additional sources of 

information from other instruments. Microwave radiometers can be used to obtain an estimate of 

the total precipitation water path (PWP), which is defined as the column-integrated liquid water that 

is in the form of precipitation. This estimate complements the radar reflectivity measurements in 

that it imposes a constraint on the total attenuation through the rain column. An accurate estimate 

of PWP forces the algorithm to operate with the correct atmospheric water mass while the radar 

reflectivities determine how this mass is distributed vertically. This emphasizes the 

complementarity of active and passive microwave data in rainfall retrievals. It is also apparent that 

the optimal constraint accuracy increases with increasing rain rate and with decreasing altitude: the 

greater the attenuation, the more accurate the PWP estimate must be to correct for it. Depending on 

the specific goals for the application of the algorithm, an estimate of PWP with only moderate 

accuracy might be all that is required to constrain the retrieval. In applications involving the use of 

a high-frequency radar to supplement rainfall information obtained at lower frequency, for example, 

retrievals in rainfall lighter than 4 or 5 mm h-1 may be of primary importance, in which case a PWP 

estimate accurate to 20% is sufficient. 

The path-integrated attenuation (PIA) approach to correct for attenuation, which makes use of the 

surface-return echo to estimate the total attenuation through the rain column, is stable and yields 

much more accurate results when attenuation is severe (Iguchi and Meneghini 1994). This is 

confirmed by the remarkable improvement in the retrieval when a precipitation water path constraint 

is imposed on the retrieval. Since the PIA derives from the precipitation water path, both constraints 

perform essentially the same function. Either method (or both) can be used with very little 

modification. It is important to note that the above discussion covering application of this algorithm 

to the CloudSat radar is explicitly for the purpose of retrieving very light rain that may not be 

detectable at lower frequencies. 
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3.1 Retrieval algorithms for rain 

 

It is important to note that all retrieval algorithms depend critically upon the assumptions that go 

into them. Furthermore, transforming remote-sensing observations into actual rainfall rate products 

is based on a priori assumptions on the typology of precipitation (ongoing microphysical processes, 

stratiform vs convective) and introduces unavoidable uncertainties. That is, it is often the case that 

particular Ze-R relations, to highlight one example, are selected to characterize specific precipitation 

regimes. This will necessarily tend to exclude a wider class of precipitation types that could also be 

considered. For example, for the TRMM PR rainfall estimates were affected by the choices made 

for the Ze-k and Ze-R relations. However, part of this difficulty was alleviated by taking advantage 

of the peculiarity of the spaceborne radar, i.e., the surface echo. The use of the surface reference 

method enabled the possible range of the raindrop size distribution to be narrowed. However, it was 

acknowledged that the non-uniform rain distribution within the radar resolution cell could represent 

a large source of error when the attenuation was severe (Iguchi et al., 2000), and a first-order 

correction for this effect was provided by the algorithm. 

An example of TRMM rainfall data has been provided by Shukla et al. (2019), who evaluated 

TRMM rainfall estimates from the Upper Ganga Basin (Himalayan catchment) by comparing them 

with gauge-based India Meteorological Department (IMD) gridded precipitation records. They 

found that the spatial distribution of rainfall during post-monsoon and winter season is captured 

adequately, but the limited efficiency of TRMM is reflected for the pre-monsoon and monsoon 

seasons. A bias correction has satisfactorily enhanced the spatial distribution of rainfall obtained 

from TRMM for almost all the seasons except for data collected during the monsoon season. A 

seasonal evaluation of bias-corrected TRMM precipitation against IMD is represented in the form 

of scatter plots in Figure 2, which corresponds to Figure 6 in Shukla et al. (2019). Overall, a 

significant improvement in monthly precipitation has been observed post bias correction in all the 

seasons. The correlation between the two precipitation datasets for the post-monsoon and winter 

season has improved from 0.57 and 0.55 to 0.65 and 0.64, respectively. The R2 value for the pre-

monsoon season also improved from 0.24 to 0.32 post bias correction, but remained lower than for 

the other seasons. Overall, bias correction has significantly improved the TRMM rainfall estimates 

especially for pre-monsoon, post-monsoon and winter and the corrected rainfall can be used as a 

climate input for various hydrological studies. 
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Figure 2: Scatter plot of IMD precipitation against bias corrected TRMM precipitation representing 

correlation for four seasons (pre-monsoon, monsoon, post-monsoon and winter) in the Upper Ganga 

basin. (Reproduced from Shukla et al., 2019) 

 

After the successful use of TRMM to obtain rainfall estimates, this approach was also adapted to 

the CloudSat CPR. The objective of the CloudSat 2C-RAIN-PROFILE rainfall product (Lebsock, 

2018) is to infer profiles of precipitation liquid and ice water content along with an associated 

surface rain rate from the CPR reflectivity profiles and a constraint on the path-integrated 

attenuation (PIA) of the radar beam. Key inputs to the algorithm flow from the 2C-PRECIP 

COLUMN product, which flags profiles for precipitation, determines the freezing level, determines 

the precipitation type (convective/stratiform/shallow), and provides an estimate of the magnitude 

and uncertainty of the PIA. The algorithm further makes use of ancillary temperature and humidity 

estimates from the ECMWF analysis provided in the ECMWF-AUX product. Because the CPR 

operates at the strongly attenuated frequency of 94 GHz, the attenuation constraint given by the PIA 
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is central to the retrieval to avoid the propagation of errors discussed by Hitschfeld and Bordan 

(1954). The problem of estimating the rain rate from the observations is underconstrained and 

requires a number of simplifying assumptions. These assumptions take the form of simple physical 

models that are imposed upon the problem to make the necessary radiative calculations possible. 

These models include (1) a model to distribute cloud water in the vertical and determine the cloud 

DSD, (2) a model of evaporation of rain below cloud base, (3) a model of the precipitation DSD, 

and (4) a description of the thermodynamic phase of the hydrometeors in each radar bin. Cloud 

water must be modelled not because of its influence on the reflectivities themselves but rather due 

to its influence on the PIA. As a result, the location of the cloud water within the vertical profile is 

of secondary importance. It is assumed within the algorithm that the cloud water content is uniform 

with height below the freezing level and the cloud water path (CWP) is given by a parameterization 

based on the work by Lebsock and L’Ecuyer (2011). The CWP is then distributed evenly between 

the cloud base and the top of the liquid layer. A model of evaporation of rain water from cloud base 

to the surface is taken from Comstock et al. (2004). 

In the original iteration of the 2C-RAIN-PROFILE product three distinct rain drop size distributions 

were used to describe deep precipitation, shallow convection, and shallow stratiform. In the most 

recent version of the code, the algorithm’s maintainers implemented a single moment 

parameterization of the DSD as a function of the rain liquid water content taken from Abel and 

Boutle (2012). This was originally developed to improve model simulations of rainfall intensity but 

has much broader applicability. The parameterization assumes an exponential size distribution that, 

using model parameters from Abel and Boutle (2012), provides the best fit to a diversity of rain 

types from heavy deep convective rain to stratocumulus drizzle. Using this parameterization allows 

the retrieval to avoid sudden transitions in the assumed DSD, and therefore the retrieval parameters, 

which was sometimes observed in an older version of the algorithm. The vertical structure of 

thermodynamic phase is based on the stratiform/convective flag input from the 2C-PRECIP-

COLUMN data product. This provides an output value for precipitation type 

(convective/stratiform/shallow) along with the freezing level (based on ECMWF analysis) and the 

rain top height. Cloud liquid water is distributed uniformly throughout the liquid portion of the 

profile. An estimate of precipitation incidence is provided in the 2C-PRECIP-COLUMN product. 

It should be noted that there are certain additional aspects to consider when determining the 

effectiveness of the algorithm. For example, profiles over land surfaces are currently treated as 

missing pixels by the algorithm due to the inherent difficulty in estimating the PIA over land. Future 

versions of the algorithm may attempt to address these profiles. In the heaviest precipitation, the 

surface return may be completely saturated making an estimate of the surface cross-section 

impossible. In this situation only an estimate of the lower bound on the PIA may be made. In this 

case the 2C-RAIN-PROFILE algorithm is not run, and a negative rain rate is passed through from 

the 2C-PRECIP-COLUMN product. The absolute value of this rain rate may be interpreted as a 

minimum possible rain rate. Care should be taken when working with a dataset in which the fraction 

of pixels that meets this criterion exceeds 0.5% because this condition is set in the heaviest rainfall 

events that contribute the most to accumulations. Output profiles are only reported for the lowest 

cloud layer beginning at the first instance of that layer exceeding -15 dBZ. The product does not 

therefore provide a complete description of the entire profile of liquid and ice hydrometeors. 

Furthermore, there is a systematic data loss for heavy precipitation cases. Profiles are also not 

available when the algorithm does not converge to a valid solution. 
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Figure 3: The left-hand panel shows retrieved rain rates at 14 GHz, with input from a database used 

for testing GPROF. The right-hand panel shows the same but at 94 GHz. There is a clear discrepancy 

at 94 GHz for rain rates greater than about 1.5 mm hr-1 (Reproduced from L’Ecuyer and Stephens, 

2002). 

 

L'Ecuyer and Stephens (2002) used synthetic retrievals in order to demonstrate the utility of the 

technique. The algorithm was tested using a cloud database (consisting of approximately 10 000 

cloud and rainfall profiles) used in the Goddard Profiling Algorithm (GPROF; Kummerow et al., 

2001; 2015), which has been employed in rainfall retrievals from the TRMM Microwave Imager 

(Kummerow and Giglio, 1994; Olson et al., 1996). A scatterplot of retrieved surface rain rate against 

the GPROF input at 14 GHz is presented in the left-hand panel of Figure 3, corresponding to Figure 

2 of L’Ecuyer and Stephens (2002). The results show excellent agreement for surface rain rates 

below 40 mm h-1. Significant attenuation by large raindrops at higher rain rates, however, degrades 

the quality of the retrievals. The right-hand panel of Figure 3, corresponding to Figure 3 of L’Ecuyer 

and Stephens (2002), shows similar results obtained from a retrieval using reflectivities at 94 GHz. 

Attenuation is severe for all rainfall at 94 GHz and only rain rates less than 1.5 mm h-1 are retrieved 

accurately in the absence of additional information. 

Another description of retrieving parameters associated with light precipitation has been provided 

by Mitrescu et al. (2010), and the profiling and retrieval algorithm used comprises a number of 

components. These include a cloud microphysical model, a 94-GHz reflectivity model, a model for 

multiple-scattering effects, consideration of surface effects and a melting layer model. The CPR on 

board CloudSat measures backscatter reflectivity as a function of distance from both distributed 

(i.e., hydrometeors) and solid (i.e., surface) targets. The profiling algorithm relies on the physical 

relationship between the returned power, measured as a function of distance to the target, and the 

cloud, precipitation, and surface properties. Because electromagnetic radiation at 94 GHz, the 

operating frequency of the CloudSat CPR, is affected by absorption resulting from atmospheric 

water vapour, the measured signal is subject to both cloud and atmospheric attenuation, and this 

must be taken into account. Because of the large volume sampled by the CPR, the returned power 

at a given range is often increased because of multiply scattered photons. A component of this 

multiply scattered energy leads to a loss of correct ranging capability, since the signal may have 

come from other regions of the cloud. These effects increase with the penetration depth and with 

the size of cloud particles. Therefore, the ability to accurately simulate CPR observations (and 

thereby retrieve physical parameters) becomes increasingly more challenging for range gates closer 

to the ground (i.e., farther away from radar), which is where the precipitation occurs. 
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Since clouds are composed of a distribution of particles (ice and/or water), of particular interest are 

physical parameters relating to these, such as number concentration, geometrical dimension, mass, 

fall velocities, and rain rates. Moreover, even if clouds at some point in their evolution are in fact 

composed of a bimodal distribution of cloud particles and precipitating particles, the radar is mostly 

sensitive to the latter. Therefore, it is often the case that clouds are represented through a single 

particle distribution that is chosen to best describe precipitating particles. Obviously this approach 

would be valid only in precipitating clouds. A common assumption is that all clouds can be 

described in terms of a Marshall–Palmer droplet size distribution. The retrieval (or inversion) 

method chosen by Mitrescu et al. (2010) for inferring profiles of precipitation rate is the optimal 

estimation technique. Described in detail in many papers (e.g., Jazwinsky 1970; L’Ecuyer and 

Stephens 2002; Rodgers 1976), it uses the forward model to minimize the cost function. 

Mitrescu et al. (2010) validated their results by applying their retrieval algorithm to an orbital 

segment that was collected when CloudSat was over the KLIX Next Generation Weather Radar 

(NEXRAD), near New Orleans, Louisiana, on 31 July 2006. Figure 4 corresponds to Figure 2 in 

Mitrescu et al. (2010) and the uppermost panel of Figure 4 shows the radar profile as recorded by 

the CPR. Evident in the radar return is a nimbostratus cloud structure with echo tops around 12 km 

and with its base obscured by the rain signal. The bright band (BB), which can be clearly 

distinguished, is just below the freezing level as indicated by the temperature profile. Strong echoes 

near the surface suggest that precipitation was likely. The second panel of Figure 4 demonstrates 

the profiling capabilities of CloudSat and both the performances and limitations of the Mitrescu et 

al. (2010) retrieval algorithm as it shows profiles of the retrieved LWC and ice water content (IWC) 

only for cases where the precipitation flag is set. The third panel of Figure 4 shows the unattenuated 

94-GHz reflectivity. This is nothing more than the application of the forward model to the retrieved 

LWC and IWC profiles. The bottom panel of Figure 4 shows the rain rates inferred using CloudSat 

data applied to three different algorithms and one using KLIX radar data (extracted along CloudSat 

track). The latter is converted into rainfall rates using the default (Z–R) relationship for the WSR-

88D radar network and shown with the green line. The black line denotes results using the algorithm 

developed by Mitrescu et al. (2010). As an additional comparison, the blue line represents the 

approach described by Matrosov (2007), where an extinction versus rain-rate (k–R) relationship is 

being employed. The red line shows the rain rates equivalent to a uniform cloud layer as described 

by Haynes et al. (2009), where only PIA information is used to infer a rain rate. Finally, the along-

CloudSat track rain rates as retrieved using the AMSR-E passive microwave sensor on board Aqua 

are presented with an orange line. For this particular case, the agreement between all these various 

retrieval schemes (and/or sensors) is satisfactory. 

Conclusion: CloudSat products that return rainfall estimates will function well during conditions 

where the levels of precipitation are not too high. Conversely, heavy rain will result in significant 

attenuation that will produce appreciable effects in the derived rain rates. CloudSat returns reliable 

estimates of rain rates when these lie between about 0.1 and 5.0 mm h-1. 
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Figure 4: Case study of 31 Jul 2006 near KLIX NEXRAD radar. (top) CloudSat reflectivity, (second 

from top) retrieved profiles of LWC and IWC, (third from top) simulated 94-GHz reflectivities using 

retrieved LWC and IWC profiles, and (bottom) rainfall rates using (i) Mitrescu et al. (2010) method 

(black line), (ii) k–R method (Matrosov, 2007; blue line), (iii) PIA-based method (Haynes et al., 

2009; red line), (iv) KLIX Z–R relationship (green line), and (v) AMSR-E-derived precipitation 

rates (orange line). (Reproduced from Mitrescu et al., 2010). 
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3.2 Retrieval algorithms for snow 

 

As well as estimates of the rain rate, the CloudSat CPR can also calculate levels of snowfall. The 

CloudSat Snow Profile product (2C-SNOW-PROFILE) provides estimates of vertical profiles of 

snowfall rate along with snow size distribution parameters and snow water content for radar 

reflectivity profiles observed by the CloudSat CPR which, based on an evaluation of the profile and 

ancillary data, appear to coincide with snow at the surface (Wood et al., 2013).  For these profiles, 

the product also estimates snowfall rate at the surface.  Because of ground clutter, the CPR cannot 

reliably measure reflectivities near the surface. To overcome this limitation, the product algorithm 

estimates snow properties using a truncated reflectivity profile, terminated somewhat above the 

surface, then uses the estimated snow properties in the bottom-most portion of the profile to estimate 

the surface snowfall rate. For the truncated reflectivity profile, profiles of size distribution 

parameters are retrieved using an optimal estimation algorithm which incorporates a priori 

information about snow microphysical properties, radar scattering properties, and size distribution 

parameters.  Retrievals are performed only for profiles which appear likely to contain snow at the 

surface, either dry snow or snow with a small melted mass fraction. The retrieved size distribution 

parameter profiles and the a priori information are then used to calculate profiles of snowfall rates 

and snow water contents. The optimal estimation method produces uncertainty estimates for the 

retrieved size distribution parameters, and these uncertainties are then used to estimate uncertainties 

for the snowfall rates and snow water contents. 

Snowfall rate depends on the abundance of snow particles of different sizes (the particle size 

distribution or PSD), the masses of those particles, and their fall speeds. Fall speeds in turn depend 

on particle masses, their shapes, and environmental conditions. As is true for lower-frequency 

precipitation radars, radar backscattering at the 94 GHz frequency used by the CPR is sensitive to 

PSD and particle masses; however, at this higher frequency, backscattering is also sensitive to 

particle shape. With even simple models for the PSD, the particle masses and the shapes, 

observations of 94 GHz radar reflectivity alone are insufficient to constrain the models sufficiently 

to determine snowfall rates. To address this insufficiency, optimal estimation is used as the retrieval 

method for 2C-SNOW-PROFILE. This method enables the use of explicit a priori information 

which can help constrain the retrievals. Additionally, optimal estimation allows uncertainties in the 

retrieval assumptions and observations to be propagated into estimates of uncertainties in retrieval 

products such as snowfall rate (Wood et al., 2014). Wood et al. (2013) note that there is the potential 

for ground-clutter effects to produce anomalously high levels of snowfall close to the ground. 

Several studies have shown the utility of CloudSat in obtaining snowfall estimates, e.g. Heymsfield 

et al. (2018) who covered alternative methods for deriving snowfall rate, Palerme et al. (2014) who 

discussed the amount of snow falling on the Antarctic ice sheet, and Matrosov (2019) who compared 

results with ground-based radars. CloudSat has also been used to evaluate other snowfall algorithms, 

e.g. SLALOM for the GMI (Rysman et al., 2018). CloudSat remote-sensing observations were also 

compared with two in situ micro-rain radars (MRR) at the coastal French Dumont d’Urville and 

mountainous Belgian Princess Elisabeth stations in East Antarctica (Lemonnier et al., 2019). This 

assessment of the CloudSat uncertainties provided confidence in the retrieval given the different 

climatic and geographical conditions of the two stations. It also justifies further analysis of this 

dataset in this region of the globe, where snowfall is critical and poorly known. Figure 5 shows 

results from the study by Lemonnier et al. (2019) and corresponds to Figure 3 presented by them. 

Focusing on the Dumont d’Urville station, Figure 5a shows a good agreement between CloudSat 

and the MRR’s snowfall rates for each vertical level. Indeed, an averaged satellite precipitation rate 

at all levels is included within the 95% MRR confidence interval. The MRR profile presents a 
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maximum of the snowfall rate of 0.75 mm h-1 at 750 m and an inversion of the precipitation rate 

likely due to low-level sublimation processes, whereas the ground clutter prevents CloudSat from 

seeing the inversion. According to Durán-Alarcón et al. (2019), this precipitation event is 

representative of the climatology of the DDU station as it lies between the 20th and 80th quantiles 

(indicated by grey dashed line) with a shape similar to the average climatology in solid black line. 

According to Figure 5b, there is a poor concordance between the two datasets for low snowfall rate 

values. The MRR recorded low-level strong values until a null signal of precipitation from 1000 m 

upward, where CloudSat still recorded small but significant rates. An inversion of the precipitation 

rate at low levels is also observed under the maximum precipitation rate of 1 mm h-1 at 600 m. The 

strong gradient of this inversion is likely due to katabatic wind effects, which can drastically dry out 

atmospheric layers when blowing down from the ice cap. This event shows that the use of CloudSat 

for surface precipitation determination may be problematic in certain conditions for a specific event. 

It is also important to note that this event is an anomalous climatological event at the DDU station, 

in comparison with the quantiles of the vertical structure of precipitation both in terms of snowfall 

rate and shape. 

Figure 5c shows a good agreement between the four lowest values of CloudSat observations and the 

MRR profile. Indeed, every averaged satellite measurement is included in the 40%-confidence 

interval, but the standard deviations indicate a large dispersion. Above this altitude the precipitation 

rate is small and the agreement is weaker. This is similar to what is observed in Figure 5b. CloudSat 

observes again a small signal of precipitation where MRR recorded a null snowfall rate, suggesting 

some limitations in the sensitivity or attenuation of the MRRs but also a satellite sensitivity for low 

snowfall rates. This event is an important anomalous climatological event at the PE station because 

the observed snowfall rates are much higher than the snowfall rates of the Durán-Alarcón et al. 

(2019) climatology. This is caused by the passage of an atmospheric river over the station. Figure 

5d snowfall rates observed by both CloudSat and MRRs are quite low compared to the three other 

cases but the agreement remains good for the five lower satellite levels. According to Durán-Alarcón 

et al. (2019), this precipitation event is representative of the climatology of the PE station with in 

particular the presence of virga with very low precipitation rates included between the high and low 

quantiles. 

Conclusion: CloudSat provides snowfall estimates with no identification of possible error for 

snowfall rates up to 5.0 mm h-1. If the near-surface snowfall rate exceeds this value, then an 

indication of possible error in the retrieval is output in the retrieval status. There is also potential 

for ground clutter to give anomalously high values for snowfall close to the ground. 
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Figure 5: (a) Comparison between CloudSat (blue dots with 2-standard-deviation bars) and MRR 

(red solid line with shaded area representing a 95% confidence interval) for the 17 February 2016 

precipitation event at the DDU station. (b) Same as panel (a) for the 20 March 2016 event at the 

DDU station. (c) Comparison between CloudSat (blue dots with 2standard deviation bars) and MRR 

(red solid line with shaded area representing a 40% confidence interval) for the 15 February 2011 

precipitation event at the PE station. (d) Same as panel (c) for the 13 January 2015 event at the PE 

station. The mean precipitation profile obtained over a long period of observation is also shown and 

separated into quantiles. The grey dashed lines represent the 20th and 80th quantiles, the dark dashed 

line represents the 50th quantile and the solid line represents the average of the vertical structure of 

precipitation. (Reproduced from Lemonnier et al., 2019) 
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3.3 Retrieval algorithms for ice 

 

This discussion on single-frequency algorithms will conclude with CloudSat algorithms relating to 

ice. An example of an algorithm pertaining to ice is given by Austin et al. (2009), who describe a 

retrieval procedure used to extract ice cloud microphysical parameters using CloudSat CPR data 

and temperature measurements. This technique is based upon that developed by Benedetti et al. 

(2003), but proceeds without an independent measure of the visible optical depth being required. It 

follows the standard approach of applying an optimal estimation algorithm in order to extract 

parameters associated with the particle size distribution. 

The earliest versions of the retrieval algorithm, which occasionally failed to converge, represented 

the ice particles as spheres of fixed density whose size was modelled using a three-parameter 

modified gamma distribution. The retrieval would solve for the characteristic diameter, and the 

particle number concentration and particle distribution width were assigned fixed values and 

uncertainties based on climatology, field data or other considerations. These forward model 

parameters were constrained to be invariant with height. Values of typical microphysical parameters 

such as effective radius and ice water content (IWC) were easily calculated in terms of the size 

distribution parameters. A key improvement was made by incorporating dependence of the particle 

size distribution parameters on the height and the temperature. The augmented forward model 

utilized a log-normal distribution of ice crystals that is completely characterized by three 

parameters: the ice particle number concentration, the geometric mean diameter and the width of 

the distribution. Assuming thin ice clouds allows the particles to be described as Rayleigh scatterers. 

To compensate for the case where the reflectivity is overestimated due to the presence of non-

Rayleigh scatterers, a correction based on Mie scattering properties was applied. The actual retrieval 

uses the optimal estimation approach described by Rodgers (1976; 1990), Marks and Rodgers 

(1993), and Rodgers (2000), where a vector of measured quantities is related to a state vector of 

unknowns by the specified forward model. 

A validation of algorithms for ice has been provided by Austin et al. (2009). In order to have a 

common basis for comparison, the then current and previous retrievals described in Austin et al. 

(2009) were run on the same data sets used by Heymsfield et al. (2008). Plots of the ratio of retrieved 

to measured IWC (r = IWCretr/IWCmeas) are shown in Figure 6, corresponding to Figure 5 of Austin 

et al., (2009), where the then previous algorithm is denoted ‘‘R03’’ and the then current algorithm 

is labelled ‘‘R04.’’ The plots show individual retrievals as small dots, with mean and standard 

deviation values for a given parameter range plotted as a large black dot and horizontal line, 

respectively. Figure 5 shows that the then current algorithm (R04) generally performed better than 

the then previous algorithm (R03), but there are situations where the opposite is true. The R04 

algorithm is seen to have less low bias at low Ze values (ignoring Ze below the 30 dBZ minimum 

detectable signal of CloudSat) at a cost of more low bias at high Z values. 
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Figure 6: Ratio of retrieved to measured IWC for data from the intercomparison study described by 

Heymsfield et al. (2008), plotted as a function of radar reflectivity Ze, for (a) the previous algorithm 

‘‘R03’’ and (b) the current algorithm ‘‘R04.’’ Small points represent the individual measurements, 

while the circles and horizontal lines represent the mean and standard deviation of values in a given 

parameter range. The newer algorithm performs more effectively than the older version 

(Reproduced from Austin et al., 2009). 

 

Another example of validation applied to ice clouds is provided by Matrosov (2015), who 

considered precipitating systems. For the 15 November 2010 observational case, WSR-88D-based 

IWP estimates are depicted in Figure 7, which corresponds to Figure 5 of Matrosov (2015). The 

vertical dashed lines indicate the boundaries of the ‘‘cone of silence,’’ where NEXRAD IWP 

estimates either are not available or are diminished because of the maximum tilt limitation. MH08, 

2B-CWC-RO, and 2C-ICE IWP estimates from CloudSat are also shown in this figure. 2B-CWC-

RVOD IWP values differ from 2B-CWC-RO IWP values by only a few percentage points and are 

not depicted. The negligible difference between IWC values corresponding to these products was 

also noted by Protat et al. (2010) who analysed a large set of retrievals near Darwin, Australia. It 

can be seen from the presented data that outside the cone of silence there is an overall good 

correspondence between locations of IWP maxima and minima from the ground-based retrievals 

and all CloudSat products. For this event, IWP values change from the maximum values of about 

10 kg m-2 to very small values near the latitude of 31.6°. The 2B-CWC-RO product provides the 

smallest IWP values from all the retrievals considered here. 
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Figure 7: KSHV and CloudSat IWP retrievals along the satellite ground track on 15 Nov 2010. The 

black line shows WSR-88D-based IWP estimates and the vertical dashed lines represent the 

boundaries of the cone of silence where WSR-88D measurements are absent or not available for the 

whole vertical extent of the observed precipitation system. MH08, 2B-CWC-RO, and 2C-ICE IWP 

estimates from CloudSat are also shown in this figure. (Reproduced from Matrosov, 2015). 

 

Conclusion: There is clearly considerable variability, and hence uncertainty, in the estimates of 

IWP obtained from different CloudSat data products, which each rely on particular Ze-S relations. 

The CloudSat IWP produced by the various products is only in general and qualitative agreement, 

i.e. high or low, at certain locations. 
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4. DUAL-FREQUENCY RADAR ALGORITHMS 

 

 

 

 
Figure 8: (a) Depiction of a downward-looking GPM satellite. The horizontal discs represent 

sampling volumes. The forward method calculates DSD values starting at the top and moving to the 

bottom. The backward method calculates from the bottom to the top. (b) Shows how the bin 

nomenclature and specific attenuation are defined. The lower part of the figure shows the two 

general types of dual-frequency retrieval algorithms: forward and backward. There are three types 

of backward retrieval algorithms: standard dual-wavelength, single-pass SRT-based, and non-SRT-

based iterative. (Reproduced from Rose and Chandrasekar, 2005). 
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The Dual-frequency Precipitation Radar (DPR), deployed on the GPM Core Satellite, offers several 

improvements relative to its single-frequency counterpart (Hou, 2010). These include improvements 

in hydrometeor identification, particularly in convective rain, higher accuracy in the estimates of 

rain rate and water content, and information on the particle size distribution (PSD) in both rain and 

snow. With regard to the PSD, the DPR provides a characteristic size parameter (such as the median 

mass diameter, D0) estimated from the difference (in dB) between Ku- and Ka-band attenuation-

corrected radar reflectivity factors for a reasonable range of assumed gamma distribution shape 

parameters or snow mass densities. A characteristic number concentration of the PSD can then be 

found from D0 and the radar equation. Attenuation correction, which is key to the success of any 

radar algorithm at these frequencies, can be accomplished either by the use of the surface as 

reference target or by an iteration where the PSD itself is used in a step-wise correction procedure 

(e.g., Meneghini et al. 1997, Mardiana et al. 2004, Rose and Chandrasekar 2006). Potentially more 

robust formulations (e.g. Grecu et al., 2011) have also been created using the dual-frequency 

airborne precipitation radar. 

Dual-frequency methods have been described by Matrosov et al. (2005), who highlighted the ability 

to obtain independent estimates of hydrometeor effective size, particularly for the non-spherical 

particles that constitute ice clouds and snow. Such dual-frequency methods are covered by Rose and 

Chandrasekar (2005), who describe the algorithm utilized by the GPM dual-frequency precipitation 

radar, with operating frequencies in the Ku (13.6 GHz) and Ka (35.6 GHz) bands. Figure 8 

corresponds to Figures 1 and 2 of Rose and Chadrasekar (2005) and Figure 8(a) is a depiction of the 

downward-looking satellite showing two rays, one for each wavelength, projected through a simple 

storm cloud and precipitation region. The small discs represent the resolution volumes of the radars. 

The DPR brought new algorithms to measure and retrieve precipitation parameters such as the DSD 

in each resolution volume. The underlying microphysics of precipitation structures and DSDs 

dictate the types of models and retrieval algorithms that can be used to estimate precipitation. One 

such retrieval algorithms is a dual-wavelength type that does not use the surface-reference technique 

(SRT). The dual-frequency retrieval approach has been known since the 1970s and has found 

renewed interest with the GPM DPR. Considerable work has already been done to evaluate the 

algorithm as a hybrid-SRT method (Meneghini et al., 1997) and as a standalone method with no 

SRT (Mardiana et al., 2003). Additional work has been done by Liao et al. (2003) to use the 

algorithm in the snow region. Inherent in the application of the dual-frequency algorithm are 

assumptions about the types of hydrometeors in each region: above the melting layer in snow; within 

the melting layer; and below the melting layer in rain. The types of hydrometeors assumed in the 

melting layer and above can significantly affect the retrieved DSDs and subsequent rain rate in the 

rain region. For GPM radar frequencies, the dual-frequency method appears to work best in low to 

moderate rain rates, and yields more detailed DSD information than does the single-frequency 

approach. Because of the potentially large attenuation of the Ka-band signal in high rain rates, the 

algorithm has a firm limitation on the maximum rain-rate that it can be used to measure. 

Generally, there are two main types of dual-frequency algorithms that can be used with a downward-

looking radar: (1) the forward method, where the DSDs are calculated at each bin starting from the 

top bin and moving to the bottom, see Figure 8(a); and (2) the backward method, where the 

algorithm begins at the bottom bin and moves upward to the top calculating the DSD parameters 

and attenuation along the way (Mardiana et al., 2003; Meneghini et al., 2002). The lower part of 

Figure 8 shows a summary diagram of these methods. The assumption with the forward method is 

that there is known or at least assumed attenuation above the top bin. The integral equations are 

solved in a single pass through the hydrometeor regions. The forward method can be unstable in 

moderate to high attenuation levels coincident with moderate to high rain rates (Meneghini et al., 
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2002). Although backward-calculation algorithms tend to be more stable than the forward types, 

they also require an a priori knowledge of the total two-way path-integrated attenuation (PIA) for 

each ray or an ability to calculate it. The backward type of algorithm can be further divided into 

three groups: (1) standard dual-wavelength; (2) surface-reference technique; and (3) iterative non-

SRT. The basic principle of the standard dual-wavelength approach is to estimate the path 

attenuation (and rain rate) using the radar equation and the ratio of the returned power of both 

wavelengths. This method requires one or two assumptions: first, the rain rate must be uniform over 

the measurement interval; or second, the reflectivity factor must be wavelength-independent, 

implying Rayleigh scattering at both frequencies (Chandrasekar et al., 2003). The SRT method uses 

a backward calculation method assuming a total path-integrated attenuation value at the bottom for 

each wavelength. The third method, the non-SRT algorithm, is a self-consistent algorithm wherein 

the total PIA for each frequency is first estimated using an initial guess, and then optimized 

iteratively (Mardiana et al. 2004). 

Considerable work has been done to evaluate backward-calculating dual-frequency algorithms, such 

as a hybrid SRT method (Meneghini et al. 1997, 2002). Additionally, another retrieval algorithm is 

an iterative, dual-frequency type that does not use PIA derived from the SRT but instead estimates 

it as part of an iterative process (Mardiana et al. 2004). For GPM, the iterative dual-frequency 

method appears to be best suited for low-to-moderate rain rates below about 12–18 mm h-1 

(assuming a uniform rain column, 3 km in height), and yields more detailed DSD information than 

does the single-wavelength method used in TRMM. Liao and Meneghini (2004) stated that under 

relatively high rain rates the iterative approach does not converge. Rose and Chandrasekar (2005) 

later showed that the dual-wavelength single-loop model (which incorporates the iterative model) 

can converge to incorrect DSD values when the retrieved intercept-diameter pairs are in the incorrect 

convergence region. Both the forward and backward methods described above suffer from 

multivalued solutions when retrieving the median volume diameter for rain. This outcome is 

described in detail by Liao et al. (2003), Mardiana et al (2004), and Meneghini et al. (2002). Rose 

and Chandrasekar (2006) proposed a supplementary method, using a linear model for vertical 

profiles of the median volume diameter and the intercept parameter in the rain region to avoid the 

multivalued solutions. Le et al. (2009) proposed and evaluated a hybrid approach combining the 

advantages of the forward method and the recursive backward method. Le et al. (2009) applied the 

forward method to the ice and melting ice regions to avoid large attenuation while a linear 

assumption was applied in the rain region. No SRT information is needed in this algorithm, which 

used an iterative procedure to optimize DSD parameters at the bottom of rain region by constructing 

the cost function along the whole vertical profile. 

Kubota et al. (2014) evaluated the success of precipitation estimates using synthetic data. This study 

focused on evaluating the estimated precipitation rates from the single and dual-frequency 

algorithms at a 2-km altitude over ocean within the 125 km KaPR observation swath width. A 

precipitation rate calculated from the assumed DSD in the synthetic data was regarded as the true 

value. Figure 9, which corresponds to Figure 5 in Kubota et al. (2014), shows probability density 

functions (pdfs) for precipitation rates at an altitude of 2 km over the ocean for the 7 orbits of the 

KaPR sampling-experiment data. The units of both axes are taken to be the precipitation rate in 

decibels, dB Pr, i.e., 10 × log10 (precipitation rate). The KuPR estimates were in good agreement 

with the true values. For the KaPR results, distinct underestimates were found for precipitation rates 

of more than 6 dB Pr (about 4 mm h-1), while overestimates were found for precipitation rates of 

less than about 4 mm h-1. Differences between the KaMS and the KaHS results were small. In Figure 

9(c), estimates of the DPR show underestimation in the precipitation rate for values less than 10 mm 

h-1, and overestimation for precipitation rates of above 10 mm h-1. The DSD in the synthetic data 
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were estimated from the PR2A25 product, and the relationship between k/Ze and D0 in the synthetic 

data was identical to that used in the algorithms. Thus, the assumptions used in the KuPR-only 

algorithm are consistent with the assumed DSD which provides an accuracy for the KuPR-only 

algorithm better than can normally be expected. 

 

 
Figure 9: Pdfs of precipitation rates at an altitude of 2 km over the ocean in 7 orbits during the KaPR 

sampling experiment. Vertical axes are precipitation rates of (a) KuPR, (b) KaMS, (c) DPR, and (d) 

KaHS. All horizontal axes are precipitation rates from the true values. The units of both axes are 

decibel-precipitation-rate, dB Pr, i.e., 10 × log10 (precipitation rate). The values, -10, 0, 10, and 20 

dB Pr correspond to 0.1, 1.0, 10.0, and 100 mm h-1, respectively. The contours show labelled values 

(Reproduced from Kubota et al., 2014) 
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Figure 10: Validation of (a, b) DPR, (c, d) CORRA, and (e, f) GPROF GMI Products. The left 

column shows the satellite product versus ground validation reference for instantaneous rain rates 

at native resolution (5 km footprint for DPR and CORRA and 15 km effective field of view (EFOV) 

for GPROF GMI). Dashed lines in left column indicate that each product meets the requirements of 

0.2–110 mm/h for DPR and 0.2–60 for GMI. The right column shows results averaged over 50 km 

for bias and normalized mean absolute error (NMAE) random error to be <25% at 10 mm/h and 

<50% at 1 mm/h as indicated in the green shaded area. The DPR data are from Version 05 and are 

the Matched Scan (Ku+Ka) retrievals (Reproduced from Skofronick-Jackson et al., 2018) 

 

Further to evaluations undertaken using synthetic data, Skrofonick-Jackson et al., (2018) have 

provided a comparison between actual GPM-derived rain rates and those obtained from ground data. 

Figure 10 corresponds to Figure 4 of Skrofonick-Jackson et al. (2018) and presents comparisons 

between rain rate estimates obtained using three GPM data products, (1) DPR (radar only), (2) 
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CORRA (combined radar-radiometer) and (3) GMI (radiometer only), and a value obtained at the 

ground that is assumed to be correct. Figure 10 demonstrates that the DPR and CORRA quantify 

rain rates between 0.2 and 110 mm h-1, while GMI estimates rain rates up to 60 mm h-1 due to the 

averaging of strong convective cells by the coarser-resolution radiometer observations. Note that at 

the DPR (GMI) 5 km (15 km) footprint scales, rain rates ≥ 110 mm h-1 (60 mm h-1) are very 

infrequent, and make up less than 0.1% of the rain occurrences over the 2.5-year sample shown. 

Figure 10 (right) demonstrates that GPM-CO’s instantaneous rain rate bias and uncertainty are 

excellent, being less than 50% at 1 mm h-1 and less than 25% at 10 mm h-1. The errors are less at 10 

mm h-1 since this is where both the Ku and Ka channels on DPR are sensitive to the rain and provide 

additional constraints for both the DPR and CORRA algorithms. In Figure 10e, the GMI biases run 

a little high at 1 mm h-1, probably due to the GMI mistaking some land surface features for low rain 

rates. See section 6 below for a discussion regarding combined radar-radiometer algorithms. 

An important objective of the GPM mission is the detection of falling snow, since it accounts for a 

significant fraction of precipitation in mid to high latitudes (Casella et al., 2017b). The GPM DPR 

is designed with enhanced sensitivity to detect lighter liquid and solid precipitation. Casella et al. 

(2017b) assessed the DPR's ability to identify snowfall using near-coincident CloudSat CPR 

observations and products as an independent reference dataset. CloudSat’s near global coverage and 

the high sensitivity of its W-band CPR make it suitable for snowfall-related research. While 

DPR/CPR radar sensitivity disparities contribute substantially to snowfall detection differences, 

other factors such as precipitation phase discriminators that produce snowfall identification 

discrepancies are also analysed. Results show that even if the occurrence of snowfall events 

correctly detected by DPR products is quite small compared to CPR (around 5–7%), the fraction of 

snowfall mass is not negligible (29–34%). A direct comparison of CPR and DPR reflectivities 

illustrates that DPR misdetection is worsened by a noise-reducing DPR algorithm component that 

corrects the measured reflectivity. This procedure eliminates the receiver noise and side lobe clutter 

effects, but also removes radar signals related to snowfall events that are associated with relatively 

low reflectivity values. In an effort to increase DPR signal fidelity associated with snowfall, Casella 

et al. (2017b) propose a simple algorithm using matched DPR Ku/Ka radar reflectivities producing 

an increase in the fraction of snowfall mass detected by DPR of up to 59%. 
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Figure 11: Cross section of one coincident observation from CloudSat CPR and GPM DPR for a 

snowfall case study on 30 April 2014. Figure panels show from top to bottom CPR reflectivity, DPR 

Ku Normal Scan (NS) measured and corrected reflectivity, DPR Ka Matched Scan (MS) reflectivity 

and Ka High Sensitivity scan (HS) measured and corrected reflectivity (version 4). Every panel 

shows also the surface level (from CPR) and the clutter-free bin height (from DPR) as dashed and 

continuous magenta lines. (Reproduced from Casella et al., 2017b) 

 

Figure 11 corresponds to Figure 2 of Casella et al. (2017b) and shows CPR reflectivity profiles, as 

well as both the measured (Z) and corrected (Zc) DPR reflectivity profiles as they appear in 2ADPR 
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product version 4, for a coincident observation of a snowfall event on 30 April 2014. This 

widespread frontal snowfall event, which is part of the combined CPR-DPR snowfall dataset, 

occurred over Eastern Russia north of the Sea of Okhotsk. The more sensitive CPR indicated 

maximum echo top height between ~5–8 km from ~58.5° to 61° latitude. Typical maximum radar 

reflectivity values were between 10 and 15 dBZ, with some embedded regions exceeding these 

values. The CPR also observed shallower cloud structures with echo top height less than ~2 km 

capable of producing snow north of 61° latitude. CPR reflectivity values associated with the 

shallower snowfall are consistently weaker than the deeper snowfall located further south. The DPR 

Ku uncorrected reflectivity profiles reveal some structure below ~4 km in the deeper snowfall 

segment of this event between ~58.8°–60° latitude, but most of the event north of 60° latitude and 

at higher altitudes is missed by the DPR due to the relatively poor radar sensitivity. The DPR 

footprint size may also have an impact on the detection capabilities especially when observing 

smaller cloud structures. The DPR Ka-MS and Ka-HS products indicate minimal structure in the 

inner DPR scan swath. Maximum Ku DPR reflectivities appear higher than the CPR reflectivities 

near the surface in the most intense precipitation cores, as maximum Ku reflectivities exceed 20 

dBZ. Ku/W reflectivity discrepancies are an expected manifestation of non-Rayleigh scattering 

effects, as well as attenuation from supercooled liquid water (Hiley et al., 2011), that can suppress 

W-band reflectivity values associated with larger frozen hydrometeors compared to coincident Ku-

band observations. 

It is also clear that the measured reflectivity has values near the limit of the radar sensitivity and it 

is affected by a significant receiver noise component that can be as intense as around 12 dBZ (Ku 

and Ka-HS) or 18 dBZ (Ka-MS). While this effect is common in the database analysed by Casella 

et al. (2017b), the corrected reflectivity shows the complete suppression of receiver noise and also 

the correction for attenuation to levels below the surface clutter level. Unfortunately the suppression 

of the receiver noise also eliminates part of the weak signal that is related to snowfall (e.g. in the Ku 

cross section between 60.1° and 59.4° in latitude). Comparing the CPR and DPR reflectivity, it is 

clear that the regions where some signal is detected are more limited for the DPR both in the 

horizontal and vertical scale, even considering the different minimum height where these 

instruments are not affected by ground clutter. The presence of an intense receiver noise in the DPR 

data is a strong limitation for the measurement of the weak signals related to snowfall, however the 

presence of strong echoes due to sidelobe clutter is probably more detrimental to precipitation 

retrievals. 

Conclusion: Rain rates up to 110 mm h-1 can be quantified by the GPM DPR rainfall algorithm. 

The errors are lower at 10 mm h-1 than at, say, 1 mm h-1 since this is where both the Ku and Ka 

channels on the DPR are sensitive to the rain and provide additional constraints for both the radar-

only and radar-radiometer algorithms. Snowfall is also well characterized by the DPR, although 

data corresponding to lower snowfall rates are sometimes lost because of a correction used to 

remove receiver noise and sidelobe clutter effects. 
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5. TRIPLE-FREQUENCY RADAR ALGORITHMS 

 

Triple-frequency techniques have been discussed by Mason et al. (2019), who covered radar 

observations of snow, Grecu et al. (2018), who investigated a nonparametric method for estimating 

precipitating ice, Leinonen et al. (2018), who developed an algorithm to retrieve microphysical 

properties pertaining to snow, and Battaglia et al. (2019), who discussed the application of a triple-

frequency retrieval technique to data from aircraft. Battaglia et al. (2019) covered the possibility of 

retrieving DSD parameters if triple-frequency radar measurements are available and effective DFRs 

for the pairs Ku-Ka and Ka-W can be derived. The main obstacle to performing such a triple-

frequency retrieval resides however in the assumption that effective DFR can be derived from the 

measurements. For rain, attenuation increases rapidly with frequency and with rain rate and can be 

challenging to account for, and it can reduce the received radar power significantly, e.g. from ranges 

beyond those corresponding to heavy rain layers down into the noise level. Additional sources of 

attenuation (e.g. caused by cloud liquid droplets or melting particles; Matrosov, 2008) can further 

complicate the problem. For ice and snow, when combining frequencies for which different parts of 

the size distribution transition from the Rayleigh to the non-Rayleigh scattering regime, Ze of the 

frequency which is more affected by non-Rayleigh scattering will be reduced. Once three 

frequencies are combined, a separation between aggregates and the more spheroidal shapes appears. 

Because of the only recent availability of triple-frequency airborne radar observation datasets, the 

development and testing of triple-frequency retrieval are topics of current research. When 

attenuation severely affects the higher frequency channels (as for when supercooled liquid or 

heavily rimed precipitation is present and/or when the microphysical retrieval is run for the entire 

precipitation column) triple-frequency retrievals are based on optimal estimation (L’Ecuyer and 

Stephens, 2002; Grecu et al., 2011; Mason et al., 2017) approaches, which disentangle non-Rayleigh 

and attenuation effects by optimizing a cost function via an iterative process based on a forward 

model radar operator (e.g. Haynes et al., 2007; Hogan and Battaglia, 2008; Battaglia et al., 2016a). 

Bayesian approaches have also been recently developed for retrieving ice-only microphysics under 

the assumption that effective reflectivities can be recovered (Leinonen et al., 2018). But to date only 

a few cases have been applied to three (or more) frequency radar observations (Battaglia et al., 

2016b; Battaglia et al., 2015; Battaglia et al., 2016a; Leinonen et al., 2018). 

An example of an optimal estimation retrieval applied to the data collected by the Airborne Third 

Generation Precipitation Radar (APR-3; Sadowy et al., 2003) flown on board the NASA DC-8 

aircraft during the OLYMPEX field campaign (details in Houze et al., 2017) is depicted in Figure 

12, corresponding to Figure 5 in Battaglia et al. (2019). Results are presented for two different 

retrieval methodologies. The first is the method proposed in Tridon et al. (2018) (TRI18) and is 

applicable to the whole precipitation column (left-hand panels) except the melting layer (white 

band). A preliminary classification mask identifies the ice, melting and rain region (bottom right 

panel in Figure 4 of Battaglia et al., 2019) and roughly categorizes the different types of ice. Only 

results for one scattering model, the lightly rimed B-model with LWP = 100 g m-2 proposed by 

Leinonen and Szyrmer (2015), are shown here (left panels). Such a model was found to be the best 

one for reconciling in-situ and radar remote sensing measurements for the whole campaign. The 

second is the retrieval described in Leinonen et al. (2018) (LEI18), which is applicable only for the 

ice phase and uses lookup tables mapping the measurement space to the state space (right-hand 

columns). The microphysics is here illustrated in terms of mean mass-weighted particle size (top 

panels) and equivalent water content (centre panels). The bulk ice density as defined in Leinonen et 

al. (2018) (bottom right) clearly shows a vertical evolution of ice particles from bulk ice density at 

the top of the cloud (small ice crystals) to much smaller densities corresponding to fluffier 
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snowflakes close to the freezing level. From a direct comparison of the two retrievals it is clear that 

LEI18 produces ice particles smaller than TRI18 and slightly larger ice water contents. Figure 12 

also shows that for the full-column retrieval (left) there is a reasonable flux continuity between the 

top and the bottom of the melting level (bottom panel). In-situ validation data are provided by the 

Citation aircraft that was flying below the DC-8 (track highlighted in the top panels of Figure 4 in 

Battaglia et al., 2019). An intercomparison between in-situ and retrieved microphysical properties 

in the ice part for the upper leg is shown in Figure 6 of Battaglia et al. (2019). The retrieved values 

are comparable but it remains challenging, given the uncertainties in the in-situ measurements and 

the collocation/sampling issues, to draw definitive conclusions about the quality of the two 

retrievals. 

 

 
Figure 12: Retrieved parameters for the leg shown in Figure 4 of Battaglia et al. (2019): mean mass-

weighted maximum size (top), IWC (centre) and flux (bottom). The right bottom panel shows the 

bulk ice density as defined in Leinonen et al. (2018). (Reproduced from Battaglia et al., 2019) 

 

Conclusion: A lack of validation presently exists for triple-frequency observations, which would 

therefore be enhanced significantly through the presence of more such validating data. Bearing in 

mind that all models have assumptions and associated uncertainties, which lead to divergent 

conclusions and retrieval results, then validation is best conducted for particular microphysical 

regions where the information content is high, i.e. in regions where retrievals with different 

frequencies would give different results, e.g. varying particle size distribution, particle habit etc. 
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6. RADAR-RADIOMETER ALGORITHMS 

 

During the TRMM era, several algorithms for estimating precipitation from a combination of radar 

and microwave radiometer observations were developed (Grecu et al., 2016). The TRMM 

observatory included a single-frequency (Ku band) crosstrack scanning radar and a multichannel 

(10–85 GHz), conically scanning passive microwave radiometer (see Kummerow et al. 1998). Radar 

and radiometer observations coincided over the 245-km radar swath. Haddad et al. (1997) used a 

Bayesian approach to adjust path-integrated attenuation in the near-vertical columns of the radar 

scans using independent estimates of path-integrated attenuation from radar observations of surface 

reflection (Meneghini et al. 2000) as well as observed microwave radiances. Grecu et al. (2004) 

later formulated a variational approach to radar–radiometer estimation of precipitation from 

TRMM. Similar to Haddad et al. (1997), a parameter of the precipitation particle size distribution 

was used to optimize the path-integrated attenuation in each radar profile, but microwave radiances 

were also simulated in the same forward model framework. Masunaga and Kummerow (2005) 

developed a combined algorithm methodology based on cloud-resolving model simulations and an 

iterative search procedure that determined the pre-calculated observations most consistent with the 

actual observations. An approach similar to that of Grecu et al. (2004) but based on a Gauss–Newton 

inversion methodology rather than adjoint modelling was developed by Munchak and Kummerow 

(2011). 

At the heart of the GPM Mission are the radar and radiometer measurements provided by the Core 

Observatory. Along with the associated radar-radiometer algorithms, these data provide detailed 

and accurate information on the characteristics of precipitation. Although the existing TRMM 

combined algorithms could, in principle, have been extended to the GPM instruments, they were 

not able to readily process the additional information provided by the GPM Core Observatory. One 

obvious extension of the existing TRMM formulations is the inclusion of a Ka-band radar specific 

term in the maximum likelihood functional that lies at the core of these algorithm formulations 

(Grecu et al. 2004; Munchak and Kummerow 2011). Since this approach is also consistent with 

existing dual-frequency radar estimation methods (Grecu et al. 2011), it is deemed the most seamless 

extension of existing approaches able to make use of GPM observing capabilities. However, to 

circumvent the difficulties generally arising from the use of complex forward models in inverse 

problems, an alternative ensemble-based statistical minimization procedure that does not require 

adjoint modelling or expensive finite difference sensitivity calculations was utilized. A similar 

approach was previously demonstrated in Grecu and Olson (2008). 

The combined GPM radar-radiometer algorithm has been described in detail by Grecu et al. (2016). 

While the DPR algorithms represent a major advancement over the TRMM PR by providing not 

only estimates of the 3D precipitation structure but also estimates of the PSD characteristics, 

ambiguities still exist as a result of a number of assumptions. These assumptions include the vertical 

profiles of water vapour and cloud liquid water as well as the ‘shape’ parameter, μ, of the size 

distribution and the mass densities of snow aggregates and graupel. The purpose of the combined 

DPR+GMI retrieval is to use the multi-channel GMI radiances as additional constraints on the DPR 

profiling algorithm over the radar swath. Specifically, some of the aforementioned assumptions can 

be constrained by using variational procedures that minimize departures between simulated and 

observed brightness temperatures, or by using filtering approaches which determine an ensemble of 

radar solutions that are consistent with the brightness temperatures and their uncertainties. 

Therefore, the resulting combined precipitation retrievals are consistent with both DPR reflectivity 

profiles and multi-channel GMI radiances within the framework of maximum-likelihood estimation. 

The combined retrieval methodology is based on approaches developed and tested within the 
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TRMM mission. Improvements include the incorporation of a more complex radar-only retrieval 

algorithm, the optimization over an extended set of assumptions, and the inclusion of uncertainty 

estimates in the final products. The combined DPR+GMI retrievals, which provide high-quality 

precipitation estimates, have been used to construct an a priori database that relates hydrometeor 

profiles to microwave radiances over the range of observed brightness temperatures. The advantage 

of databases constructed directly from combined observations over cloud-model derived databases 

has previously been demonstrated (e.g. Grecu and Olson, 2006). This database is applicable not only 

to the Core GMI retrieval but also to constellation radiometer retrievals. 

Conclusion: As for the GPM DPR radar-only algorithms, the combined radar-radiometer technique 

can also quantify rain rates up to 110 mm h-1, and has errors that are lower at 10 mm h-1 since this 

is where both the Ku and Ka channels on DPR are sensitive to the rain and provide additional 

constraints for both the DPR and CORRA algorithms. 

 

7. COMPARISONS OF SATELLITE PRECIPITATION ALGORITHMS 

 

 
Figure 13: Zonal precipitation averages (mm day−1) for the full annual cycle during 2015. The five 

estimates are GPM DPR (dual-frequency radar; red), GPM GPROF (GMI passive radiometer; blue), 

GPM Ku band (single-frequency radar; green), GPM CORRA (DPR + GMI; orange), IMERG 

(GPM merged with constellation estimates; purple), GPCP global estimates (light blue), and 

MCTA2 estimates over ocean (black, covering the years 2007–10). The GPCP is version 2.3, MCTA 

is version 2, IMERG is version 03, and the other GPM products are version 04. (Reproduced from 

Skofronick-Jackson et al., 2017). 

 

A good example of validation efforts, in the context of GPM algorithms and data, has been provided 

by Skofronick-Jackson et al., (2017), who highlighted the importance of direct statistical validation 
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and verification of satellite estimates against high-quality ground measurements and physical 

validation for algorithm improvement and hydrological models. Validating data are garnered from 

both regular ongoing surface observations and focused field campaigns (Hou et al. 2014). Major 

GPM validation efforts include (1) comparisons among satellite precipitation products, (2) 

comparisons against ground datasets, and (3) analyses for meeting mission requirements. 

One evaluation technique compares the zonal means among the various GPM instrument algorithms 

and established precipitation estimates such as the Global Precipitation Climatology Project (GPCP) 

datasets (Adler et al. 2003) and, over ocean, the Merged CloudSat, TRMM, and Aqua version 2 

(MCTA2) dataset (Behrangi et al. 2014). Both GPCP and MCTA2 include a variety of input datasets 

selected for their utility in precipitation estimation at both low and high latitudes. Shown are the 

global zonal means for 2015 for land and ocean (Figure 13a), ocean only (Figure 13b), and land 

only (Figure 13c). Figure 13, corresponding to Figure 5 in Skofronick-Jackson et al. (2017), 

illustrates that DPR, Ku-band, CORRA, and GPROF algorithm retrievals are in good agreement. 

The GPM zonal accumulations underestimate with respect to the MCTA at higher latitudes. This is 

most attributable to the fact that the DPR minimum detectable reflectivities correspond to minimum 

rain rates of approximately 0.2 mm h−1. Since much of the higher-latitude precipitation is light, and 

CORRA and GPROF are based on DPR estimates, GPM is low in the higher latitudes. A high-

latitude, light-precipitation solution for GPROF was implemented in the version 05 algorithm 

release. Examining the mean daily precipitation (mm day−1) for each of the algorithms shows that 

IMERG’s annual precipitation is lower than the other algorithms while there are interesting 

differences among the diverse approaches over land. Land surfaces tend to complicate the retrieval 

process and the various algorithms use different approaches to mitigate surface (emissivity and 

clutter) issues. 

Conclusion: GPM precipitation methods return a variety of precipitation-related accumulations 

dependent on the nature of the algorithm used to calculate them. It is evident that there is a notable 

discrepancy in the accumulations given by the IMERG method. 
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